# LionTuts:rs 

www.LionTutors.com
SCM 301 (Lutz) - Exam 3 - Practice Exam Solutions

1. C-Constant competition
2. D - Value perspective
3. D - All of the above
4. A - Conformance perspective
5. $\mathrm{A}-0.32$

The mean of 198 is centered in the LTL and the UTL. We know that the mean is centered because the UTL of 211 plus the LTL of 198 divided by 2 is equal to the mean of 198.

Since the mean is centered, we can use the process capability ratio $\left(C_{p}\right)$ :

$$
\begin{aligned}
& C_{p}=\frac{U T L-L T L}{6 \sigma} \\
& \frac{211-185}{6^{*}(13.5)}=\frac{26}{81}=0.32
\end{aligned}
$$

6. B - Less than or equal to 2.17 pounds

Six Sigma quality - A level of quality that indicates that a process is well controlled

- To achieve Six Sigma quality - Reduce the variability of a process to such a point that the process capability is greater than or equal to 2

$$
\begin{aligned}
& C_{p}=\frac{U T L-L T L}{6 \sigma} \geq 2 \quad U T L-L T L \geq 12 \sigma \\
& 211-185 \geq 12 \sigma \\
& 26 \geq 12 \sigma \\
& \sigma \leq \frac{26}{12} \\
& \sigma \leq 2.167=2.17
\end{aligned}
$$

7. $\mathbf{D}$ - Total quality management (TQM)
8. B-Conformance
9. A - Attributes
10. B - Cost
11. A-0.67

$$
\begin{aligned}
& U T L=40+1=41 \\
& L T L=40-1=39 \\
& \sigma=0.50 \\
& C_{p}=\frac{U T L-L T L}{6 \sigma} \\
& =\frac{41-39}{6 *(0.50)}=\frac{2}{3}=0.67
\end{aligned}
$$

12. B - No

The process capability ratio is not $\geq 1$
13. A - 0.015

Based on the information given in the problem, the variable type that we are dealing with is attributes. Therefore, we are going to be using a p-chart.

$$
\bar{p}=0.12
$$

$\hat{\sigma}=\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$
$=\sqrt{\frac{0.12(1-0.12)}{450}}=\sqrt{\frac{0.12(.88)}{450}}=0.01531=0.015$
14. B-0.165
$U C L=\bar{p}+3 \hat{\sigma}$
$U C L=0.12+3(0.015)$
$U C L=0.12+0.045=0.165$
15. C-0.075
$L C L=\bar{p}-3 \hat{\sigma}$
$L C L=0.12-3(0.015)$
$L C L=0.12-0.045=0.075$
16. D - Process capability index
17. A - True
18. C - 0.061

$$
\begin{aligned}
& \bar{p}=\frac{\sum_{j=1}^{m} p_{j}}{m} \\
& \bar{p}=\frac{(6+7+1+4+2+10+6+3+2+2)}{(70 * 10)}=\frac{43}{700}=0.061
\end{aligned}
$$

19. D-0.147

$$
\begin{aligned}
& \wedge \\
& \hat{\sigma}=\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \\
& =\sqrt{\frac{0.061(1-0.061)}{70}}=\sqrt{\frac{0.061(0.939)}{70}}=0.0286 \\
& U C L=\bar{p}+3 \hat{\sigma} \\
& U C L=0.061+3(0.0286) \\
& U C L=0.061+0.0858=0.1468=0.147
\end{aligned}
$$

20. B-0
$L C L=0.061-3 \hat{\sigma}$
$U C L=0.061+3(0.0286)$
$U C L=0.061-0.0858=-0.0248=0$

Remember, if your LCL is a negative value, set it to 0 !
21. D - Reliability
22. $A-0.50$

$$
C_{p k}=\min \left[\frac{\mu-L T L}{3 \sigma}, \frac{U T L-\mu}{3 \sigma}\right]
$$

$$
\begin{aligned}
& \mathrm{LTL}=20-0.9=19.1 \\
& \text { UTL }=20+0.9=20.9
\end{aligned}
$$

$$
=\min \left\lceil\frac{20.3-19.1}{3 *(0.4)}\right\rceil,\left\lceil\frac{20.9-20.3}{3 *(0.4)}\right\rceil
$$

$$
=\min \left\lceil\frac{1.2}{1.2}\right\rceil,\left\lceil\frac{0.6}{1.2}\right\rceil
$$

$$
=\min \lceil 1,0.5\rceil=0.50
$$

## Use the Following Work for the Next Two Problems

$$
\overline{\bar{X}}=\frac{\sum_{j=1}^{m} \bar{X}_{j}}{m}
$$

$$
\overline{\bar{X}}=\frac{(13.2+13.3+14.1+12.6+12.2)}{5}=\frac{65.4}{5}=13.08
$$

$$
\bar{R}=\frac{\sum_{j=1}^{m} R_{j}}{m}
$$

$$
\bar{R}=\frac{(1.3+1.3+2.3+1.3+0.9)}{5}=\frac{7.1}{5}=1.42
$$

Sample size ( n ) $=7$
$A_{2}=0.42$
$D_{3}=0.08$
$D_{4}=1.92$
23. A - 2.7264; 0.1136

$$
\begin{aligned}
& \operatorname{UCL}(R-\text { chart })=D_{4} \bar{R} \\
& \operatorname{UCL}(R-\text { chart })=(1.92)(1.42)=2.7264
\end{aligned}
$$

$\operatorname{LCL}(R-$ chart $)=D_{3} \bar{R}$
$\operatorname{LCL}(R-$ chart $)=(0.08)(1.42)=0.1136$
24. C - 13.6764; 12.4836

$$
\begin{aligned}
& U C L(x-\text { bar })=\overline{\bar{X}}+A_{2} \bar{R} \\
& U C L=13.08+(0.42)(1.42) \\
& U C L=13.08+0.5964=13.6764 \\
& L C L(x-\text { bar })=\overline{\bar{X}}-A_{2} \bar{R} \\
& U C L=13.08-(0.42)(1.42) \\
& U C L=13.08-0.5964=12.4836
\end{aligned}
$$

25. A - Internal failure costs
26. A - X-bar chart
27. A - Internal failure costs
28. B - The consumer's risk
29. C - Serviceability
30. D - External failure costs
31. A - Continuous improvement
32. B - Appraisal
33. A - True
34. A - True
35. B-0.40

Since the process mean $(\mu)$ is not exactly centered on the target value, we need to use the process capability index instead of the process capability ratio. The formula for the process capability index is:

$$
C_{p k}=\min \left[\frac{\mu-L T L}{3 \sigma}, \frac{U T L-\mu}{3 \sigma}\right]
$$

We are looking for the standard deviation that would give us a process capability index of 1.5. Based on the information given, we can find the LTL and UTL:

LTL = 160-2 = 158
UTL $=160+2=162$
Now, we can plug the information that we have into the $C_{p k}$ formula:

$$
\begin{gathered}
1.5=\min \left[\frac{160.2-158}{3 \sigma}, \frac{162-160.2}{3 \sigma}\right] \\
1.5=\min \left[\frac{2.2}{3 \sigma}, \frac{1.8}{3 \sigma}\right]
\end{gathered}
$$

We want to use the second fraction inside of the brackets to move forward since it is smaller. We always want to use whichever fraction is smaller inside of the brackets when solving for $C_{p k}$. Then, we can use algebra to get $\sigma$ by itself.

$$
\begin{aligned}
& 1.5=\frac{1.8}{3 \sigma} \\
& 4.5 \sigma=1.8 \\
& \sigma=\frac{1.8}{4.5}=0.40
\end{aligned}
$$

36. C-0.44

Since the process mean $(\mu)$ is exactly centered on the target value, we need to use the process capability ratio instead of the process capability index. The formula for the process capability ratio is:

$$
C_{p}=\frac{U T L-L T L}{6 \sigma}
$$

We are looking for the standard deviation that would give us a process capability ratio of 1.5. Based on the information given, we can find the LTL and UTL:

LTL = 160-2 = 158
UTL $=160+2=162$

Now, we can plug the information that we have into the $C_{p}$ formula:

$$
\begin{gathered}
1.5=\frac{162-158}{6 \sigma} \\
9 \sigma=4 \\
\sigma=\frac{4}{9}=0.4444
\end{gathered}
$$

37. D - All of the above
38. A - The information they receive is more distorted than companies located downstream
39. C - 70,000 ounces

Since demand is constant and there is no variability in lead time, we can use the following formula to calculate the reorder point (ROP):
$R O P($ with certianty $)=d \times L$
$=(10,000)^{*}(7)=70,000$ ounces
40. D - Anticipation stock
41. A - More distorted the information is that they receive
42. D - A and C

Annual demand ( $D$ ) is determined by a company's customers and is outside of a supply chain manager's control
43. C-191

Economic Order Quantity $(E O Q)=\sqrt{\frac{2 S D}{H}}$
$(E O Q)=\sqrt{\frac{2(16)(670)}{3}}=84.54=85$
Adjusted Total Annual Inventory Cost $(T A C)=H\left(\frac{Q}{2}\right)+S\left(\frac{D}{Q}\right)+D P$
$(T A C)$ at $85=3\left(\frac{85}{2}\right)+16\left(\frac{670}{85}\right)+(670 * 10.50)$
$(T A C)$ at $85=127.5+126.12+7,035=7,288.62$
(TAC) at $191=3\left(\frac{191}{2}\right)+16\left(\frac{670}{191}\right)+(670 * 7.25)$
$(T A C)$ at $191=286.50+56.13+4,857.50=5,200.13$

Since the total cost for ordering 191 units is less than the total cost for ordering 85 units, the company should order 191 units at a time to take advantage of the price discount.
44. A - 72,074

$$
R O P=\overline{d L}+z \sqrt{\bar{L} \sigma_{d}^{2}+\bar{d}^{2} \sigma_{L}^{2}}
$$

$$
(10,000)(7)+1.65 \sqrt{(7)(475)^{2}+(10,000)^{2}(0)^{0}}
$$

$$
70,000+1.65 \sqrt{1,579,375}
$$

$$
70,000+1.65(1,256.73)
$$

$$
70,000+2,073.61=72,073.61=72,074
$$

45. C - 103,066

$$
\begin{aligned}
& R O P=\overline{d L}+z \sqrt{\bar{L} \sigma_{d}^{2}+\bar{d}^{2} \sigma_{L}^{2}} \\
& (10,000)(7)+1.65 \sqrt{(7)(475)^{2}+(10,000)^{2}(2)^{2}} \\
& 70,000+1.65 \sqrt{401,579,375} \\
& 70,000+1.65(20,039.45) \\
& 70,000+(33,065.08)=103,065.09=103,066
\end{aligned}
$$

46. $\mathbf{C}$ - An increase in the standard deviation of demand will reduce the amount of safety stock that a company needs to hold

C is false because an increase in the standard deviation of demand will increase, not reduce, the amount of safety stock that a company needs to hold.
47. D - Manufacturing plant
48. B - The flexibility of inventory increases as materials move down the supply chain
49. A-253

Economic Order Quantity $(E O Q)=\sqrt{\frac{2 S D}{H}}$
$=\sqrt{\frac{(2)(\$ 400)(2,400)}{\$ 30}}=\sqrt{64,000}=252.98=253$
50. A-127

Average Inventory $=\left(\frac{\boldsymbol{Q}}{\mathbf{2}}\right)=\left(\frac{253}{2}\right)=126.5=127$
51. A - 10

Avg \# orders per $\boldsymbol{y r}=\frac{\boldsymbol{D}}{\boldsymbol{Q}}=\frac{2,400}{253}=9.486=9.49=1$
52. A - \$3,794.47

Total Ordering Cost $($ TOC $)=\boldsymbol{S} \times\left(\frac{\boldsymbol{D}}{\boldsymbol{Q}}\right)=\$ 400 \times\left(\frac{2,400}{253}\right)=\$ 3,794.47$
53. $\mathbf{B}-\$ 3,795$

Total Holding Cost $(\boldsymbol{T H C})=\boldsymbol{H} \times\left(\frac{\boldsymbol{Q}}{\mathbf{2}}\right)=\$ 30 \times\left(\frac{253}{2}\right)=\$ 3,795$
54. C - \$7,589.47

Total Annual Inventory (TAC)Cost $=\boldsymbol{H}\left(\frac{Q}{2}\right)+S\left(\frac{D}{Q}\right)$
$=\$ 3,795+\$ 3,794.47=\$ 7,589.47$
55. $\mathbf{E}$ - All of the above
56. A - Periodic review system
57. B - Safety stock
58. C - Transportation stock
59. A - Economic order quantity
60. B - Dependent
61. D - 435 shirts

$$
\begin{aligned}
& R O P=(40) *(7)+1.28 \sqrt{(7)(5)^{2}+(40)^{2}(3)^{2}} \\
& R O P=280+1.28(120.73) \\
& R O P=280+154.53=434.53=435
\end{aligned}
$$

62. B - 292

D $=(190$ units/week $)(52$ weeks $)=9,880$
$\mathrm{S}=\$ 90$
$\mathrm{H}=(\$ 420)(0.05)=\$ 21$
Economic Order Quantity $($ EOQ $)=\sqrt{\frac{2 S D}{H}}$

$$
(E O Q)=\sqrt{\frac{(2)(90)(9,880)}{21}}=291.0081=292
$$

63. D - \$6,111.21

Total Holding and Ordering Costs $($ TAC $)=H\left(\frac{Q}{2}\right)+S\left(\frac{D}{Q}\right)$

$$
\begin{aligned}
& (T A C)=21\left(\frac{292}{2}\right)+90\left(\frac{9,880}{292}\right) \\
& (T A C)=3,066+3,045.21=\$ 6,111.21
\end{aligned}
$$

64. E-244

$$
\begin{aligned}
& S S=z \sqrt{\bar{L} \sigma_{d}^{2}+\bar{d}^{2} \sigma_{L}^{2}} \\
& S S=1.28 \sqrt{(2)(3)^{2}+(190)^{2}(1)^{2}} \\
& S S=1.28 \sqrt{18+36,100} \\
& S S=1.28(190.05)=243.264=244
\end{aligned}
$$

65. A - 624

$$
\begin{aligned}
& \boldsymbol{R O P}=\overline{\boldsymbol{d} \boldsymbol{L}}+\boldsymbol{S S} \\
& \mathrm{ROP}=(190)(2)+244 \\
& \mathrm{ROP}=380+244=624
\end{aligned}
$$

66. A - Continuous review system
67. D - An automaker purchases four tires for each automobile that they produce $\backslash$
68. D - Periodic review system
69. A-157

$$
\begin{aligned}
& \boldsymbol{R}=\boldsymbol{\mu}_{\boldsymbol{R} P+\boldsymbol{L}}+\mathbf{z} \boldsymbol{\sigma}_{\boldsymbol{R} P+\boldsymbol{L}} \\
& R=140+(1.28)(13) \\
& R=140+16.64=156.64=157
\end{aligned}
$$

70. B - 162
$R=\mu_{R P+L}+z \sigma_{R P+L}$
$R=140+(1.65)(13)$
$R=140+21.45=161.45=162$
71. C-122
$Q=R-I$
$Q=157-35=122$

## Use the Following Work for the Next Four Problems

Supplier 1
Cost per unit $=\$ 260+\$ 9+(\$ 1,100 / 3,600$ units $)$
Cost per unit $=\$ 260+\$ 9+\$ 0.31=\$ 269.31$ per unit
Cost per month = [(\$260 + \$9)*3,600] + \$1,100 = \$969,500
Supplier 2
Cost per unit $=\$ 150+\$ 5+[(\$ 7,600+\$ 1,100) / 3,600$ units $)$
Cost per unit $=\$ 150+\$ 5+\$ 2.42=\$ 157.42$ per unit
Cost per month $=[(\$ 150+\$ 5) * 3,600]+\$ 7,600+\$ 1,100=\$ 566,700$
Supplier 3
Cost per unit $=\$ 196+\$ 9+[(\$ 9,600+\$ 1,500) / 3,600$ units )
Cost per unit = \$196 + \$9 + \$3.08 = \$208.08 per unit
Cost per month $=[(\$ 196+\$ 9) * 3,600]+\$ 9,600+\$ 1,500=\$ 749,100$
72. A - Make-to-stock (MTS) product
73. D - Product-based layout
74. D - Engineer-to-order (ETO) product
75. E-Only A and B
76. A - Make-to-stock (MTS) product
77. D - Job shop
78. C - Batch manufacturing
79. E - Production line
80. D - Flexible manufacturing system (FMS)
81. B - Batch manufacturing
82. D - Activities that take place after the point of customization are called upstream activities
83. D - All of the above
84. A - Machines and workers are brought to the job
85. C - The front room
86. C - Product quality will be higher
87. A - Back room
88. C - Fixed-position
89. D - All of the above
90. A - Capital expenditures
91. $\mathbf{B}$ - The variable cost per unit is low when producing at high volumes on a production line
92. B-26

$$
\begin{aligned}
& y=\frac{D T(1+x)}{C} \\
& y=\frac{(1,500)(45 / 60)(1.15)}{50}=\frac{1,293.75}{50}=25.875=26
\end{aligned}
$$

93. D - All of the above
94. A - True
95. A - The firm's supply chain will be more vulnerable to supply disruptions
96. A - True
97. $\mathbf{C}$ - The end customers
98. E-B and C
99. D - Increase in product quality
100. C - Waiting
101. C - Lean supply chain management
102. D - In a single-card Kanban system, the single card is the production card
103. A - Move card; production card
104. A - A pull system is a production system in which actual downstream demand sets off a chain of events that pull materials through the various steps of the production process
105. A - True
106. C - Demand responsive
107. C - 100
$y=\frac{D T(1+x)}{C}$
$y=\frac{(160)(48)(1.30)}{100}=\frac{9,984}{100}=99.84=100$
108. D - Defects
109. D - Unnecessary inventory
110. A - True
111. B - The term just-in-time (JIT) production is used interchangeably with the term Lean production
112. A - Waste
113. A - True
114. D - Increasing inventory
115. A - True
116. A - True
