LionTut:ers

www.LionTutors.com

SCM 200 - Final Exam - Practice Exam Solutions

1. $A-9,8$

Mode $=$ Most common value $=9$

Mean $=(4+9+7+11+9) / 5=8$
2. $C-81$

Total units $=40+50+110=200$
$W_{A}=40 / 200=0.20$
$W_{B}=50 / 200=0.25$
$W_{C}=110 / 200=0.55$
Weighted average $=(.20)(40)+(.25)(50)+(.55)(110)=81$
3. $\mathrm{C}-$ When a distribution is negatively skewed, it has more values on the right of the distribution than the left. D is incorrect because statistics relate to samples, not populations.
4. A - Feet. The units of the MAD will simply be the units for the problem.
5. C - Standard deviation
6. A - Hours. The units of standard deviation will simply be the units for the problem.
7. B - Median
8. C - The coefficient of variation is an absolute measure is a false statement because the coefficient of variation is a relative measure and has no units.
9. $\mathrm{D}-.80$

Number of combinations $=30$
Pairs not for same concert $=24$
Probability $=24 / 30=0.80$

10. $D-20$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{x})=0(0.4)+5(0.2)+10(0.4)=5 \\
& \sigma^{2}=\sum[x-E(x)]^{2} P(x) \\
& \sigma^{2}=(0-5)^{2}(0.4)+(5-5)^{2}(0.2)+(10-5)^{2}(0.4) \\
& \sigma^{2}=10+0+10=20
\end{aligned}
$$

11. $D-2.6,3$

Mean $=(0+1+1+1+2+2+2+2+3+3+3+3+3+3+3+4+4+4+4+4) / 20=$ 2.6

Median = 3
12. B-2

$$
\begin{aligned}
& \bar{x}=\frac{9+7+11}{3}=9 \\
& s^{2}=\frac{\text { Sum of squared deviations }}{\text { Number of observations }-1}=\frac{\sum(x-\bar{x})^{2}}{n-1} \\
& s^{2}=\frac{(9-9)^{2}+(7-9)^{2}+(11-9)^{2}}{3-1}=\frac{0+4+4}{2}=4 \\
& s=\sqrt{4}=2
\end{aligned}
$$

13. $B-20$

$$
\bar{x}=\frac{40+50+60}{3}=50
$$

$$
s^{2}=\frac{\text { Sum of squared deviations }}{\text { Number of observations }-1}=\frac{\sum(x-\bar{x})^{2}}{n-1}
$$

$$
s^{2}=\frac{(40-50)^{2}+(50-50)^{2}+(60-50)^{2}}{3-1}=\frac{100+0+100}{2}=100
$$

$$
s=\sqrt{100}=10
$$

$$
C V=\frac{10}{50}(100)=20
$$

14. D-60

$$
\begin{aligned}
& \mathrm{E}(\mathrm{x})=10(0.3)+20(0.4)+30(0.3)=20 \\
& \sigma^{2}=\sum[x-E(x)]^{2} P(x) \\
& \sigma^{2}=(10-20)^{2}(0.3)+(20-20)^{2}(0.4)+(30-20)^{2}(0.3) \\
& \sigma^{2}=30+0+30=60
\end{aligned}
$$

15. D - When its outcomes are whole numbers or counts.
16. B-2.101
$\mathrm{n}=19$
$\mathrm{df}=18$
Area of left tail $=(1-0.95) / 2=0.025$
t -value $=2.101$
17. C - Confidence intervals and hypothesis testing
18. $\mathrm{A}-10^{\text {th }}$ percentile value for the standard normal table $>10^{\text {th }}$ percentile value for the t-distribution
$z=-1.28$
$\mathrm{t}=-1.383$
19. B - The standard error of a mean can sometimes be larger than the corresponding population standard deviation.
20. $A-z=1.96$ for a 95% level of confidence. Refer to the table in the review packet that lists the z-scores for common levels of confidence. You will see that answer A is the only correct statement. It is a good idea to have the z-scores for the common levels of confidence memorized.
21. $\mathrm{E}-0.9501$ to 1.0000
$\mu=26.8$
$\sigma=0.8$
$\overline{\mathrm{x}}=26.6$
$\mathrm{n}=100$
$\mathrm{z}=\frac{\overline{\mathrm{x}}-\mu}{\frac{\sigma}{\sqrt{\mathrm{n}}}}=\frac{26.6-26.8}{\frac{0.8}{\sqrt{100}}}=-2.50$
Look up 2.50 in standard normal table $=0.0062$
Probability of getting a sample mean $\leq 26.6=0.0062$
Probability of getting a sample mean $\geq 26.6=1-0.0062=0.9938$
22. $D-0.81$ is the z-score that corresponds to the area 0.7910 .
23. $\mathrm{B}-23$ minutes, 27 minutes

$$
\mathrm{UCL}=\mu+3 \frac{\sigma}{\sqrt{n}}=25+3\left(\frac{4}{\sqrt{35}}\right)=27 \text { minutes }
$$

$\mathrm{LCL}=\mu-3 \frac{\sigma}{\sqrt{n}}=25-3\left(\frac{4}{\sqrt{35}}\right)=23$ minutes
24. $A-0.25$

$$
p=x / n=50 / 200=0.25
$$

25. C-1.68
$\mathrm{n}=8$
$\pi=3 / 10=0.30$
$\operatorname{Var}(X)=n \pi(1-\pi)=(8)(0.30)(1-0.30)=1.68$
26. C - Accept the claim by rejecting Ho

Ho: $\mu=26 \mathrm{~min}$
Ha: $\mu<26$ min
$\mathrm{n}=4$
$\mathrm{df}=3$
$\alpha=0.10$
$\overline{\mathrm{x}}=\frac{24+24+20+24}{4}=23$
$s=\sqrt{\frac{(24-23)^{2}+(24-23)^{2}+(20-23)^{2}+(24-23)^{2}}{4-1}}$
$s=\sqrt{\frac{1+1+9+1}{3}}=2$
$t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$
$\mathrm{t}=\frac{23-26}{\frac{2}{\sqrt{4}}}=\frac{-3}{1}=-3$
0.025 < p-value < 0.050

Reject null hypothesis and accept alternative hypothesis.
27. $A-2.8 \pm 0.243$
$\overline{\mathrm{x}}=2.8$
$\mathrm{n}=49$
$\sigma=1.7$
Area of the tails $=(1-0.9556) / 2=0.0222$
z-value $= \pm 2.01$
$\overline{\mathrm{x}} \pm(\mathrm{z})\left(\frac{\sigma}{\sqrt{n}}\right)=2.8 \pm(2.01)\left(\frac{1.7}{\sqrt{49}}\right)=2.8 \pm 0.243$
28. $A-0.0000$ to 0.0999
$\mu=72$
$\sigma=8$
$X_{\text {High }}=90$
$X_{\text {Low }}=60$
$z=\frac{X-\mu}{\sigma}$
$z_{\text {High }}=\frac{90-72}{8}=2.25$
$p_{\text {High }}=1-0.9878=0.0122$
$z_{\text {Low }}=\frac{60-72}{8}=-1.50$
plow $=0.0668$
$p_{\text {Total }}=0.0122+0.0668=0.0790$
29. D - 0.5001 to 1.0000

Ho: $\mu=660$
Ha: $\mu>660$
$\sigma=30$
$\mathrm{n}=49$
$\overline{\mathrm{x}}=652$
$\mathrm{z}=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{652-660}{\frac{30}{\sqrt{49}}}=-1.87$
Look up -1.87 in standard normal table $=0.0307$
p-value $=1-0.0307=0.9693$
30. $C-0.10$

Probability (when $t=1.711$ at $d f=24)=0.950$
Area to the right of the t -value $=1-0.950=0.05$
Multiply be 2 because it is a two tail (\neq) test $=0.05 \times 2=0.10$
31. C - Paired sample t-test for mean differences.
32. $\mathrm{C}-\mathrm{Ha}: \mu_{\mathrm{D}}>0$. The problem tells you that the difference is (Old -New). The chef wants to see if the new time is faster. If the new time is faster, the difference will be a positive number.
33. $C-8.18$
$\mathrm{t}=\frac{\overline{\mathrm{D}}-\mu_{\mathrm{D}}}{\frac{\mathrm{S}_{\mathrm{D}}}{\sqrt{\mathrm{n}}}}=\frac{1.8-0}{\frac{1.1}{\sqrt{25}}}=8.18$
34. E - Both C and D. If Ho is rejected at a 1% level of significance, it will be rejected at higher levels of significance as well.
35. $C-75 \%$ of the variation in y can be explained by x.
36. E - Gym time, speed, and max bench press. You are looking for variables that have a p-value greater than 0.01 .
37. A - $(0.195,0.405)$

$$
\begin{aligned}
& n=100 \\
& p=30 / 100=0.30
\end{aligned}
$$

Value to look up in z-table $=(1-0.9786) / 2=0.0107$
z-score $=2.30$
Confidence interval $=\mathrm{p} \pm \mathrm{z} \sqrt{\frac{p(1-p)}{n}}$
$0.30 \pm 2.30 \sqrt{\frac{0.30(1-0.30)}{100}}=0.30 \pm 0.1054=(0.195,0.405)$
38. C - Conclude claim is not true by rejecting Ho

$$
\begin{aligned}
& n=36 \\
& \mu_{D}=11 \\
& \bar{D}=13 \\
& S_{D}=4 \\
& \alpha=0.05 \\
& d f=35
\end{aligned}
$$

Ho: $\mu_{\mathrm{D}} \leq 11$ (claim)
Ha: $\mu_{D}>11$

$$
\mathrm{t}=\frac{\overline{\mathrm{D}}-\mu_{\mathrm{D}}}{\frac{\mathrm{~S}_{\mathrm{D}}}{\sqrt{\mathrm{n}}}}=\frac{13-11}{\frac{4}{\sqrt{36}}}=3.00
$$

0.005 < p-value < 0.001
39. $B-0.167$

$$
\hat{\mathrm{p}}=\frac{\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)}=\frac{100+150}{500+1,000}=0.167
$$

40. A - You use the coefficient of determination to find the value of the correlation coefficient. You know the sign on the correlation coefficient is negative because the regression equation has a negative slope.
$R^{2}=0.64$
$r=v 0.64=0.8$
41. B-16\%
$r=0.40$
$R^{2}=0.16$
42. D-676
$\pi=0.50$
$\mathrm{E}=0.05$
z-value in table $=(1-0.9906) / 2=0.0047$
z-score $=2.60$
$\mathrm{n}=\pi(1-\pi)\left[\frac{Z}{E}\right]^{2}=0.50(1-0.50)\left[\frac{2.60}{0.05}\right]^{2}=676$
43. $A-t=0.949$

$$
\begin{aligned}
& s_{\mathrm{p}}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}} \\
& s_{\mathrm{p}}=\sqrt{\frac{(14-1) 6^{2}+(11-1) 4^{2}}{14+11-2}}=\sqrt{\frac{628}{23}}=5.23 \\
& \mathrm{t}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
& \mathrm{t}=\frac{(14-12)-(0)}{5.23 \sqrt{\frac{1}{14}+\frac{1}{11}}}=0.949
\end{aligned}
$$

44. $\mathrm{C}-0.80<\mathrm{p}$-value <0.90
$\mathrm{t}=0.949$
df $=(14+11)-2=23$
45. B - The researcher can conclude a linear relationship exists between the variables because the p -value of 0.045 is less than the significance level of 0.05 .
46. True - Make sure to double the value found using the t-table because the problem says that it is a two-tailed test.
47. False - Each units ads $\$ 1,750$ to the total cost.
48. False - The coefficient of determination is always positive, between 0 and 1. The correlation coefficient tells you about the slope of the regression equation because its value can be either positive or negative.
49. True
50. False

$$
b_{1}=r \frac{S_{y}}{S_{x}}=0.88\left(\frac{3.95}{5.50}\right)=0.63
$$

51. False

$$
C V=\frac{10}{200}(100)=5
$$

52. False - It is not possible to have cumulative relative frequencies greater than one, or 100%.
53. True
54. True - A stem and leaf plot lists all of the observations; however, it is not possible to determine all of the individual observations from a boxplot.
55. False - It is possible for your range of values to all be negative numbers.
56. False
$1-0.7698=0.2302$
$0.2302 / 2=0.1151$
Look up 0.1151 in standard normal table: $\mathrm{z}= \pm 1.20$
57. False
$\pi=0.75$
$\mathrm{n}=4$
$X=3$
$P(X)=\frac{n!}{(n-x)!x!} \pi^{x}(1-\pi)^{n-x}$
$P(X)=\frac{4!}{(4-3)!3!}(0.75)^{3}(1-0.75)^{4-3}=0.4219$
58. True
59. False - The statement would have been true if it said "All sampling distributions are probability distributions; however, not all probability distributions are sampling distributions."
60. False - The null hypothesis is that the process is in control. The alternative hypothesis is that the process is out of control.
