LionTute:

LionTutors.com

MATH 231 Exam 2 - Sample Test- Solutions

Problem 1

Use the second equation to make a polar parameterization. This gives you:

$$
\begin{aligned}
& x=2 \cos t \\
& z=2 \sin t
\end{aligned}
$$

Then use the first equation to solve for y, and plug in the values of x and z above:

$$
\begin{gathered}
y=1+2 z-x \\
y=1+4 \sin t-2 \cos t
\end{gathered}
$$

So the overall vector function is:

$$
\mathbf{r}(t)=\langle 2 \cos t, 1+4 \sin t-2 \cos t, 2 \sin t\rangle
$$

Problem 2

a) Since one variable, y, is already solved in terms of another variable, z, we will use a trivial parameterization by letting $z=t$.

This gives us:

$$
\begin{gathered}
x=5-t-2 t^{2} \\
y=2 t^{2} \\
z=t
\end{gathered}
$$

So $\mathbf{r}(t)=\left\langle 5-t-t^{2}, 2 t^{2}, t\right\rangle$
b) To find the equation of any line we need a point and direction vector.

Point: (-5, 8, 2)
Direction Vector: Find this by taking $\mathbf{r}^{\prime}(t)$:

$$
\mathbf{r}^{\prime}(t)=\langle-1-4 t, 4 t, 1\rangle
$$

We want to evaluate the direction vector at $(-1,8,2)$ which corresponds to $t=2$.

$$
\mathbf{r}^{\prime}(2)=\langle-1-4(2), 4(2), 1\rangle=\langle-9,8,1\rangle
$$

The equation of the line is:

$$
\mathbf{r}(t)=\langle-5-9 t, 8+8 t, 2+t\rangle
$$

Problem 3

To calculate arc length first find $\mathbf{r}^{\prime}(t)$.

$$
\begin{gathered}
r^{\prime}(t)=\langle 5,-2 \sin (2 t), 2 \cos (2 t)\rangle \\
\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{25+4 \sin ^{2}(2 t)+4 \cos ^{2}(2 t)}=\sqrt{29} \\
\int_{0}^{3} \sqrt{29} d t=\sqrt{29} t=3 \sqrt{29}
\end{gathered}
$$

Problem 4

$$
\begin{aligned}
\mathbf{v}(t) & =\int\left\langle-\cos t, e^{2 t},-5\right\rangle d t \\
\mathbf{v}(t) & =\left\langle-\sin t, \frac{1}{2} e^{2 t},-5 t\right\rangle+C
\end{aligned}
$$

To find C, use $\mathbf{v}(0)=\langle 0,3,1\rangle$

$$
\begin{gathered}
\langle 0,3,1\rangle=\left\langle-\sin 0, \frac{1}{2} e^{0},-5(0)\right\rangle+C \\
\langle 0,3,1\rangle=\left\langle 0, \frac{1}{2}, 0\right\rangle+C \\
C=\left\langle 0, \frac{5}{2}, 1\right\rangle
\end{gathered}
$$

$$
\mathbf{v}(t)=\left\langle-\sin t, \frac{1}{2} e^{2 t}+\frac{5}{2},-5 t+1\right\rangle
$$

$$
\mathbf{r}(t)=\int\left\langle-\sin t, \frac{1}{2} e^{2 t}+\frac{5}{2},-5 t+1\right\rangle d t
$$

$$
\mathbf{r}(t)=\left\langle\cos t, \frac{1}{4} e^{2 t}+\frac{5}{2} t,-\frac{5}{2} t^{2}+t\right\rangle+C
$$

To find C, use $\mathbf{r}(0)=\langle-1,3,2\rangle$

$$
\begin{gathered}
\langle-1,3,2\rangle=\left\langle\cos 0, \frac{1}{4} e^{0}+\frac{5}{2}(0),-\frac{5}{2}(0)+(0)\right\rangle+C \\
\langle-1,3,2\rangle=\left\langle 1, \frac{1}{4}, 0\right\rangle+C \\
C=\left\langle-2, \frac{11}{4}, 2\right\rangle \\
\mathbf{r}(t)=\left\langle\cos t-2, \frac{1}{4} e^{2 t}+\frac{5}{2} t+\frac{11}{4},-\frac{5}{2} t^{2}+t+2\right\rangle
\end{gathered}
$$

Problem 5

a)

$$
\begin{aligned}
& \mathbf{r}(t)=\int\left(2 \mathbf{i}+2 e^{2 t} \mathbf{j}+4 t \mathbf{k}\right) d t \\
& \mathbf{r}(t)=2 t \mathbf{i}+e^{2 t} \mathbf{j}+2 t^{2} \mathbf{k}+C
\end{aligned}
$$

Use $\mathbf{r}(0)=\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$, to plug in and solve for $C \ldots$

$$
\begin{gathered}
\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}=2(0) \mathbf{i}+e^{2(0)} \mathbf{j}+2(0)^{2} \mathbf{k}+C \\
\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}=\mathbf{j}+C \\
\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}=C \\
\mathbf{r}(t)=(2 t+1) \mathbf{i}+\left(e^{2 t}+2\right) \mathbf{j}+\left(2 t^{2}+2\right) \mathbf{k}
\end{gathered}
$$

b) First, find when speed is $\sqrt{20+4 e^{4}}$ by setting the magnitude of the velocity equation to that value.

$$
\begin{gathered}
\|\mathbf{v}(t)\|=\sqrt{20+4 e^{4}} \\
\sqrt{(2)^{2}+\left(2 e^{2 t}\right)^{2}+(4 t)^{2}}=\sqrt{20+4 e^{4}} \\
4+4 e^{4 t}+16 t^{2}=20+4 e^{4} \\
20 t^{2}+4 e^{4 t}=20+4 e^{4} \\
t=1
\end{gathered}
$$

So this means, we want to find the acceleration at $t=1$

$$
\begin{aligned}
\mathbf{v}(t) & =2 \mathbf{i}+2 e^{2 t} \mathbf{j}+4 t \mathbf{k} \\
\mathbf{a}(t) & =0 \mathbf{i}+4 e^{2 t} \mathbf{j}+4 \mathbf{k}
\end{aligned}
$$

Problem 6

$h(90,7)=15$
When the plant is given 90 mL of water and 7 mg of fertilizer, its height is 15 inches.
$h_{f}(90,7)=-0.5$
When the plant is given 90 mL of water and 7 mg of fertilizer, its height is decreasing at a rate of 0.5 inches/mg of fertilizer
$h_{w}(90,7)=1.2$
When the plant is given 90 mL of water and 7 mg of fertilizer, its height is increasing at a rate of 1.2 inches/mL of water

Problem 7

a) To calculate arc length first find $\mathbf{r}^{\prime}(t)$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left\langle 2 t, t^{2}, 2\right\rangle \\
\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{(2 t)^{2}+\left(t^{2}\right)^{2}+(2)^{2}} & =\sqrt{t^{4}+4 t^{2}+4}=\sqrt{\left(t^{2}+2\right)^{2}}=t^{2}+2 \\
\int_{0}^{3}\left(t^{2}+2\right) d t & =\frac{1}{3} t^{3}+\left.2 t\right|_{0} ^{3}=15
\end{aligned}
$$

b) Point: $(9,9,6)$

Direction Vector: $\mathbf{r}^{\prime}(3)=\langle 6,9,2\rangle$

$$
\langle 9+6 t, 9+9 t, 6+2 t\rangle
$$

Problem 8

a) C, because the curves are closer together
b) Negative, because as the y values increase, the value of the function (the level curves) decreases
c) Positive, because as the x values increase, the value of the function increases
d) Zero, because as the y values increase around the point, the value of the function stays the same

