MATH110 - Exam 3 - Sample Test - Detailed Solutions

1. E

Take the derivative using the quotient rule and then set the top and bottom equal to 0 .
Remember that critical numbers must be in the domain of $\boldsymbol{f}(\boldsymbol{x})$, so we can immediately cross off answer choices B and D because they contain $x=2$.

$$
f^{\prime}(x)=\frac{(x-2) 5 e^{4 x}(4)-5 e^{4 x}(1)}{(x-2)^{2}} \quad \text { Quotient Rule }
$$

$$
f^{\prime}(x)=\frac{5 e^{4 x}(4(x-2)-1)}{(x-2)^{2}} \quad \text { Factor out } 5 e^{x}
$$

$$
f^{\prime}(x)=\frac{5 e^{4 x}(4 x-9)}{(x-2)^{2}} \quad \text { Simplify }
$$

$\frac{\text { TOP }}{4 x}$	$\underline{\text { BOTTOM }}$	
$5 e^{4 x}(4 x-9)=0$	$(x-2)^{2}=0$	
$4 x-9=0$	$x-2=0$	
$x=9 / 4$	$x=2$	Set top and bottom equal to 0.

Remember that, since all exponential functions are positive, e^{x} will never equal 0 , and $x=2$ is not in the domain. So $x=9 / 4$ is the only critical number.
2. \mathbf{A}

Since there is only a constant in the numerator (no variable), we can bring the entire denominator up to the top. When we do this, the exponent will change signs:
$f(x)=2\left(4+3 e^{-2 x}\right)^{-5}$
This allows us to use the chain rule to take the derivative:
$f^{\prime}(x)=-10\left(4+3 e^{-2 x}\right)^{-6}\left(3 e^{-2 x}\right)(-2)$
Then, you can bring the negative exponent back down to the denominator and simplify what's left in the numerator:

$$
f^{\prime}(x)=\frac{60 e^{-2 x}}{\left(4+3 e^{-2 x}\right)^{6}}
$$

3. \mathbf{A}

Use the formula for compound interest:

$$
\begin{aligned}
& A=P\left(1+\frac{r}{m}\right)^{m t} \\
& A=2000\left(1+\frac{.10}{4}\right)^{(4)(5)} \\
& A=2000(1.025)^{20}
\end{aligned}
$$

4. B

To find the carrying capacity, factor out the bottom and simplify. Then carrying capacity is equal to the number on top.:
$s(t)=\frac{9000}{3+6 e^{-3 t}}=\frac{9000}{3\left(1+2 e^{-3 t}\right)}=\frac{3000}{1+2 e^{-3 t}}$
Since we know our carrying capacity is 3,000 , we can eliminate answer choices C and D.
To find $s(0)$, plug in 0 for t. Remember that $e^{0}=1$.
5. \mathbf{A}

$$
\begin{aligned}
& f(x)=\ln \frac{10 x^{4}}{\left(4 x^{3}-6\right)^{2}} \\
& f(x)=\ln \left(10 x^{4}\right)-\ln \left(4 x^{3}-6\right)^{2} \\
& f(x)=4 \ln (10 x)-2 \ln \left(4 x^{3}-6\right) \\
& f^{\prime}(x)=4\left(\frac{1}{10 x}\right)(10)-2\left(\frac{1}{4 x^{3}-6}\right)\left(12 x^{2}\right) \\
& f^{\prime}(x)=\frac{40}{10 x}-\frac{24 x^{2}}{4 x^{3}-6} \\
& f^{\prime}(x)=\frac{4}{x}-\frac{24 x^{2}}{4 x^{3}-6}
\end{aligned}
$$

6. E

Start by finding the revenue equation, then simplify.

$$
\begin{aligned}
& R(x)=p x \\
& R(x)=\left(x^{2} e^{3 x}+1\right) x \\
& R(x)=x^{3} e^{3 x}+x
\end{aligned}
$$

Now, take the derivative.

$$
R^{\prime}(x)=\left(x^{3}\right)\left(e^{3 x}\right)(3)+\left(e^{3 x}\right)\left(3 x^{2}\right)+1
$$

Now, since we know that the quantity supplied is $1,000(x=1)$, find $R^{\prime}(1)$. Plug in a 1 everywhere that you have an x right after you take the derivative, before simplifying.

$$
\begin{aligned}
& R^{\prime}(1)=\left(1^{3}\right)\left(e^{3(1)}\right)(3)+\left(e^{3(1)}\right)\left(3(1)^{2}\right)+1 \\
& R^{\prime}(1)=(1)\left(e^{3}\right)(3)+\left(e^{3}\right)(3)+1 \\
& R^{\prime}(1)=3 e^{3}+3 e^{3}+1 \\
& R^{\prime}(1)=6 e^{3}+1
\end{aligned}
$$

7. D

We are looking for the slope of the tangent line at the point $x=e$. We find the slope of a tangent line by taking the derivative of the function. Here, we will want to simplify the function before we take the derivative.

$$
\begin{aligned}
& y=x^{5} \ln \left(x^{3}\right) \\
& y=\left(x^{5}\right) \cdot 3 \ln x
\end{aligned}
$$

Now that we've simplified the function, we can take the derivative by using the product rule.

$$
y^{\prime}=\left(x^{5}\right)(3)\left(\frac{1}{x}\right)+3 \ln x\left(5 x^{4}\right)
$$

Since we were given a point, plug the point in immediately after you find the derivative. Once you've plugged in for x, simpifly.

$$
\begin{aligned}
& y^{\prime}(e)=\left(e^{5}\right)(3)\left(\frac{1}{e}\right)+3 \ln e\left(5 e^{4}\right) \\
& y^{\prime}(e)=\left(\frac{3 e^{5}}{e}\right)+3(1)\left(5 e^{4}\right) \\
& y^{\prime}(e)=3 e^{4}+15 e^{4} \\
& y^{\prime}(e)=18 e^{4}
\end{aligned}
$$

8. E

Use $A=P e^{r t}$ and solve for r .

$$
\begin{aligned}
& 7000=5000 e^{3 r} \\
& \frac{7}{5}=e^{3 r} \\
& \ln \left(\frac{7}{5}\right)=3 r \\
& r=\frac{\ln \left(\frac{7}{5}\right)}{3}
\end{aligned}
$$

9. A

Since we are looking for $d y / d x$ we need to use implicit differentiation. We will be taking the derivative of everything with respect to \mathbf{x}.

$$
\left.\begin{array}{l}
\ln (x+y)=x^{3}+41 \\
\frac{1}{(x+y)}\left(1+\frac{d y}{d x}\right)=3 x^{2}
\end{array} \begin{array}{l}
\text { We are taking the derivative with respect to } x, \text { so we } \\
\text { need to tack on a dy/dx when we differentiate the } y \text { term }
\end{array}\right] \begin{array}{ll}
1+\frac{d y}{d x}=3 x^{2}(x+y) & \text { Multiply both sides by (x+y) } \\
\frac{d y}{d x}=3 x^{2}(x+y)-1 & \text { Subtract } 1 \text { from both sides to get dy/dx alone }
\end{array}
$$

10.D

Simplify within the integral before integrating. Remember that $\sqrt{t}=t^{1 / 2}$. Then, use the rules of integration to take the antiderivative and simplify.
$\int \sqrt{t}(t-1) d t$
$\int t^{3 / 2}-t^{1 / 2} d t$
$=\frac{t^{5 / 2}}{5 / 2}-\frac{t^{3 / 2}}{3 / 2}+C$
$=\frac{2}{5} t^{5 / 2}-\frac{2}{3} t^{3 / 2}+C$
$=2 t^{3 / 2}\left(\frac{1}{5} t-\frac{1}{3}\right)+C$

11.B

Take the integral, then use the fixed costs to solve for C. If fixed costs are $\$ 400$, then that means $C(0)=\$ 400$.
$C(x)=\int(-0.4 x+100) d x$
$C(x)=-0.4 \frac{x^{2}}{2}+100 x+C$
$C(x)=-0.2 x^{2}+100 x+C$
$400=0+0+C$
$C=400$
$C(x)=-0.2 x^{2}+100 x+400$
$C(100)=-0.2(100)^{2}+100(100)+400$
$C(100)=-0.2(10,000)+10,000+400$
$C(100)=-2000+10,000+400$
$C(100)=8400$
12. B

Start by taking the integral, using a u-substitution, then use the information given to solve for C.

$$
\begin{array}{ll}
p(x)=\int \frac{-500 x}{\left(9+x^{2}\right)^{3 / 2}} d x & u=9+x^{2} \\
p(x)=\int \frac{-500 x}{(u)^{3 / 2}} \frac{d u}{2 x} & d u=2 x d x \\
p(x)=\int-250 u^{-3 / 2} d u & d x=\frac{d u}{2 x} \\
p(x)=-250 \frac{u^{-1 / 2}}{-1 / 2}+C & \\
p(x)=\frac{500}{\sqrt{u}}+C & \\
p(x)=\frac{500}{\sqrt{9+x^{2}}}+C & \\
130=\frac{500}{\sqrt{9+(4)^{2}}}+C & \\
130=100+C & \\
C=30 & \\
p(x)=\frac{500}{\sqrt{9+x^{2}}}+30 &
\end{array}
$$

13.E

Take the integral to find the Revenue function. Then use the point $R(0)=0$ to solve for C. Then plug in 100 for x.
$R(x)=10 \frac{e^{2 x}}{2}+2 \frac{x^{2}}{2}+C$
$R(x)=5 e^{2 x}+x^{2}+C$
$0=5(e)^{0}+(0)+C$
$0=5+C$
$C=-5$
$R(x)=5 e^{2 x}+x^{2}-5$

14. B

We are given that:
$P^{\prime}(x)=-2 x+20$
$P(0)=-40$

We want to know the maximum profit. Remember that profit is maximized so we will set
$P^{\prime}(x)=0$ to find out what number we ultimately need to plug into our profit equation.
$-2 x+20=0$
$x=10$
$P(x)=\int-2 x+20 d x$
$P(x)=-x^{2}+20 x+C$
Use $P(0)=-40$ to solve for C .
$-40=-(0)^{2}+20(0)+C$
$C=-40$
$P(x)=-x^{2}+20 x-40$
$P(10)=-100+200-40=60$

15. B

Use substitution to integrate.

$$
\begin{aligned}
& u=1+e^{5 x} \\
& d u=5 e^{5 x} d x \\
& d x=\frac{d u}{5 e^{5 x}}
\end{aligned}
$$

$$
\int \frac{e^{5 x}}{u} \frac{d u}{5 e^{5 x}}
$$

$$
\int \frac{1}{5} \cdot \frac{1}{u} d u
$$

$$
\frac{1}{5} \ln u
$$

$$
\frac{1}{5} \ln \left(e^{5 x}+1\right)+C
$$

16. C

Use substitution to integrate.

$$
\begin{aligned}
& u=\ln x \\
& d u=\frac{1}{x} d x \\
& d x=x d u \\
& \int \frac{u^{2}}{x} x d u \\
& \int u^{2} d u \\
& \frac{u^{3}}{3}=\left.\frac{(\ln x)^{3}}{3}\right|_{1} ^{e} \\
& \frac{(\ln e)^{3}}{3}-\left(\frac{(\ln 1)^{3}}{3}\right)=\frac{1}{3}-0
\end{aligned}
$$

17.B

You will need to use substitution, then use "backdoor substitution" to go back and solve for x in terms of u.
$u=x-2$
$d u=d x$
$x=u+2$
$\int \frac{x}{u} d u$
$\int \frac{u+2}{u} d u$
$\int \frac{u}{u}+\frac{2}{u} d u$
$\int 1+2 u^{-1} d u$
$u+2 \ln u+C$
$x-2+2 \ln (x-2)+C$
$x+2 \ln (x-2)+C$
18. C

Start by taking the second derivative and setting it equal to 0 . Remember that you can never take the log of a negative number or 0 !

$$
\begin{aligned}
& f^{\prime}(x)=\frac{72}{x}+2 x \\
& f^{\prime}(x)=72 x^{-1}+2 x \\
& f^{\prime \prime}(x)=-\frac{72}{x^{2}}+2 \\
& 0=-\frac{72}{x^{2}}+2 \\
& \frac{72}{x^{2}}=2 \\
& 2 x^{2}=72 \\
& x^{2}=36 \\
& x=-6, x=6
\end{aligned}
$$

Since you cannot take the log of a negative number, $x=6$ is the only potential inflection point. Remember, inflection points must be in the domain of the function. Start by taking the second derivative and setting it equal to 0 . Remember that you can never take the log of a negative number or 0 !

We just need to make sure the concavity changes there by putting it on a second derivative number line.

19.C

This statement is not true. You cannot expand when you are adding or subtracting inside of a log.
20.A

$$
\ln (x-y)=x^{2}+7
$$

$$
\frac{1}{(x-y)}\left(1-\frac{d y}{d x}\right)=2 x
$$

$$
\left(1-\frac{d y}{d x}\right)=2 x(x-y)
$$

$$
-\frac{d y}{d x}=2 x(x-y)-1
$$

$$
\frac{d y}{d x}=1-2 x(x-y)
$$

