www.LionTutors.com
MATH 022 - Final (Review of Exam 1, 2, \& 3) - Practice Exam Solutions

Problem \#1

a. x -intercepts: $(-1,0),(2.5,0)$
y-intercept (approximated): $\left(0, \frac{1}{3}\right)$
b. Positive: $[-4,-1),(-1,2.5)$

Negative: $(2.5,4]$
c. Average rate of change:
i. $\frac{0-4}{-1-(-4)}=-\frac{4}{3} \quad$ decreasing
ii. $\frac{1-0}{1-(-1)}=\frac{1}{2} \quad$ increasing
iii. $\frac{1-1}{2-1}=0 \quad$ constant
iv. $\frac{-3-1}{4-2}=-2 \quad$ decreasing

Problem \#2

$f(x)=x^{2}+2 x-4$
$f(x+h)=(x+h)^{2}+2(x+h)-4$
$f(x+h)=x^{2}+2 x h+h^{2}+2 x+2 h-4$

Difference quotient $=\frac{x^{2}+2 x h+h^{2}+2 x+2 h-4-\left(x^{2}+2 x-4\right)}{h}$

$$
=\frac{x^{2}+2 x h+h^{2}+2 x+2 h-4-x^{2}-2 x+4}{h}
$$

$$
=\frac{2 x h+h^{2}+2 h}{h}
$$

$$
=2 x+h+2
$$

Problem \#3

a. $p(1)=1^{2}+5(1)=6$

1 day after a rumor begins, approximately 6% of the town has heard some version of the rumor.
b. $p(t)=t^{2}+5 t$

$$
\begin{aligned}
& p(t+h)=(t+h)^{2}+5(t+h) \\
& p(t+h)=t^{2}+2 t h+h^{2}+5 t+5 h
\end{aligned}
$$

$$
\text { Difference quotient }=\frac{t^{2}+2 t h+h^{2}+5 t+5 h-\left(t^{2}+5 t\right)}{h}
$$

$$
=\frac{t^{2}+2 t h+h^{2}+5 t+5 h-t^{2}-5 t}{h}
$$

$$
=\frac{2 t h+h^{2}+5 h}{h}
$$

$$
=2 t+h+5
$$

c. $2(2)+(0.1)+5=9.1$

During the time period from 2 days to 2.1 days after the rumor begins, the percentage of the town that has heard the rumor increases by an average of approximately 9.1% per day.

Problem \#4

a. $f(x)=\frac{3 x}{5-x^{3}}$

$$
f(-x)=\frac{3(-x)}{5-(-x)^{3}}=-\left(\frac{3 x}{5+x^{3}}\right)
$$

$$
-\left(\frac{3 x}{5+x^{3}}\right) \neq\left(\frac{3 x}{5-x^{3}}\right) \neq-\left(\frac{3 x}{5-x^{3}}\right)
$$

Neither: $f(-x) \neq f(x) \neq-f(x)$
b. Odd: $f(x)=y$ and $f(-x)=-y$

c. Even: Symmetric along y-axis

Problem \#5

a. x -intercepts: $-2,0,1$

b. 2

c. 3 - The graph can have at most $n-1$ turning points.
d. $\quad a>0$
$f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$
$f(x) \rightarrow \infty$ as $x \rightarrow \infty$
e. $(-\infty,-1.25) \cup(0.25, \infty)$
f. $(-1.25,0.25)$
g. Absolute maximum: none

Absolute minimum: none
Local maximum: - 1.25
Local minimum: 0.25

Problem \#6

To find m, plug in any value for t that fits the first piece of the function with its corresponding p value as $f(x)$.
$f(1)=m(8)$
$\boldsymbol{m}=\mathbf{8}$
Then, plug in any value for t that fits the second piece of the function with its corresponding p value as $f(x)$. Isolate one of the missing variables.

$$
\begin{aligned}
& f(x)=a(t-2)^{2}+b \\
& 21=a(4-2)^{2}+b \\
& 21=a(2)^{2}+b \\
& 21=4 a+b \\
& b=21-4 a
\end{aligned}
$$

Next, plug in another value for t that fits the second piece of the function with its corresponding p value as $f(x)$. Substitute b with $21-4 a$

$$
\begin{aligned}
& f(x)=a(t-2)^{2}+b \\
& 16=a(5-2)^{2}+(21-4 a) \\
& 16=a(3)^{2}+21-4 a \\
& 16=9 a+21-4 a \\
& -5=5 a \\
& \boldsymbol{a}=-\mathbf{1}
\end{aligned}
$$

Finally, plug the value of a in to find b.
$b=21-4 a$
$b=21-4(-1)$
$\boldsymbol{b}=\mathbf{2 5}$

Problem \#7

Separately divide each term in the numerator by the monomial in the denominator and simplify.

$$
\begin{gathered}
\frac{-6 x^{4}}{-3 x^{2}}+\frac{5 x^{3}}{-3 x^{2}}+\frac{9 x^{2}}{-3 x^{2}}-\frac{7 x}{-3 x^{2}}+\frac{8}{-3 x^{2}} \\
2 x^{2}-\frac{5}{3} x-3+\frac{7}{3 x}-\frac{8}{3 x^{2}}
\end{gathered}
$$

Problem \#8

Use the "Division by Polynomials" steps listed on Page 3 of the review packet (long division form).

$$
\begin{array}{r}
\frac{6 x^{2}+4 x-15}{\left.x^{2}+0 x+2\right) 6 x^{4}+4 x^{3}-3 x^{2}+7 x-5} \\
-\frac{\left(6 x^{4}+0 x^{3}+12 x^{2}\right)}{4 x^{3}-15 x^{2}}+7 x \\
\frac{-\left(4 x^{3}+0 x^{2}+8 x\right)}{-15 x^{2}-x}-5 \\
-\frac{\left(-15 x^{2}-0 x-30\right)}{-x+25}
\end{array}
$$

$$
6 x^{2}+4 x-15+\frac{-x+25}{x^{2}+2}
$$

Problem \#9

Use the "Synthetic Division" steps listed on Page 4 of the review packet.

-3	2 2	0	5	-1	4
	\downarrow	-6	18	-69	210
	2	-6	23	-70	214

$$
2 x^{3}-6 x^{2}+23 x-70+\frac{214}{x+3}
$$

Problem \#10

Use the Remainder Theorem.

$$
\begin{gathered}
f(-3)=4(-3)^{2}+5(-3)-6 \\
f(-3)=36-15-6 \\
f(-3)=15
\end{gathered}
$$

The remainder is 15 .

Problem \#11

a. Look at the x-intercepts on the graph to find the zeros of $p(x)$.

Zero	Even/Odd Multiplicity	Multiplicity
$\mathbf{- 4}$	Even $p(x)$ does not cross over x-axis at $x=-4$	$p(x)$ levels off less near the x-axis at $x=-4$ vs. $x=1 ;$ must be a lower even multiplicity
$\mathbf{1}$	$p(x)$ does not cross over x-axis at $x=1$	4 $p(x)$ levels off more near the x-axis at $x=1$ vs. $x=-4 ;$ must be a higher even multiplicity
$\mathbf{5}$	Odd $p(x)$ does cross over x-axis at $x=5$	1 The sum of the multiplicities equals the degree, $\boldsymbol{n}=7$.

b. Use the leading coefficient, the zeros, and the multiplicities to write the complete factored form.

$$
p(x)=0.001(x+4)^{2}(x-1)^{4}(x-5)
$$

Problem \#12

a. Since $f(x)$ has a complex zero at $c=i$, we know that the conjugate, $c=-i$, must also be a zero.

We can start by factoring out $(x-c)$ for each of the known zeros:

$$
(x-i)(x+i)=x^{2}-i^{2}=x^{2}+1
$$

Use long-division form to divide $f(x)$ by $\left(x^{2}+1\right)$.

$$
\begin{array}{r}
\left.x^{2}+0 x+1\right) x^{2}+4 x-2 \\
\frac{-\left(x^{4}+0 x^{3}+x^{2}\right)}{4 x^{3}-2 x^{2}+4 x-2} \\
\frac{-\left(4 x^{3}+0 x^{2}+4 x\right)}{-2 x^{2}+0 x}-2 \\
\frac{-\left(-2 x^{2}-0 x-2\right)}{0}
\end{array}
$$

Set the quotient equal to zero to find the other zeros of the function.

$$
x^{2}+4 x-2=0
$$

Use the quadratic formula to solve.

$$
\begin{gathered}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-4 \pm \sqrt{4^{2}-4(1)(-2)}}{2(1)}=\frac{-4 \pm \sqrt{24}}{2}=\frac{-4 \pm 2 \sqrt{6}}{2}=-\frac{4}{2} \pm \frac{2 \sqrt{6}}{2}=-2 \pm \sqrt{6}
\end{gathered}
$$

Complex nonreal zeros: $i,-i$
Real zeros: $-2-\sqrt{6},-2+\sqrt{6}$
b. Use the zeros to write the complete factored form. Because the leading coefficient is 1, it can be omitted.

$$
\begin{gathered}
f(x)=(x-i)(x+i)[x-(-2-\sqrt{6})][x-(-2+\sqrt{6})] \\
f(x)=(x-i)(x+i)(x+2+\sqrt{6})(x+2-\sqrt{6})
\end{gathered}
$$

Problem \#13

a. $\quad D:[0, \infty)$ - Time can't be negative.
b. Solve for $C(t)$ when $t=0$ to find the vertical intercept.

$$
C(0)=\frac{4,000(0)}{0^{2}+400}=0
$$

Solve for t when $C(t)=0$ to find the horizontal intercept.

$$
\begin{gathered}
0=\frac{4,000 t}{t^{2}+400} \\
0=4,000 t \\
t=0
\end{gathered}
$$

The vertical and horizontal intercept occurs at $(0,0)$.
c. The degree of the numerator is less than the degree of the denominator, so there is a horizontal asymptote at $y=0$.

There are no real values of t for which $q(t)=0$, so there are no vertical asymptotes.
d. Solve for $C(t)$ when $t=10$.

$$
C(10)=\frac{4,000(10)}{10^{2}+400}=80 \mathrm{ng} / \mathrm{mL}
$$

e. Make a table of values.

\boldsymbol{t}	$\boldsymbol{C}(\boldsymbol{t})$
20	$\frac{4,000(20)}{20^{2}+400}=100$
40	$\frac{4,000(40)}{40^{2}+400}=80$
60	$\frac{4,000(60)}{60^{2}+400}=60$

Use the intercept and the known points to sketch a graph.

f. Initially, Mike's blood THC concentration increases rapidly. Then, after about 20 minutes, it begins to decrease, leveling off as it approaches zero.

Problem \#14

First, rearrange the inequality so that one side is zero.

$$
\frac{9}{2 x-4}-\frac{6}{x-3} \leq 0
$$

Next, multiply both fractions to get a common denominator. Note that we are just multiplying each fraction by 1 , so we haven't changed the inequality.

$$
\begin{aligned}
& \left(\frac{9}{2 x-4}\right)\left(\frac{x-3}{x-3}\right)-\left(\frac{6}{x-3}\right)\left(\frac{2 x-4}{2 x-4}\right) \leq 0 \\
& \frac{9 x-27}{(2 x-4)(x-3)}-\frac{12 x-24}{(2 x-4)(x-3)} \leq 0
\end{aligned}
$$

Now that we have a common denominator, we can subtract the fractions.

$$
\begin{aligned}
& \frac{9 x-27-(12 x-24)}{(2 x-4)(x-3)} \leq 0 \\
& \frac{9 x-27-12 x+24}{(2 x-4)(x-3)} \leq 0 \\
& \frac{-3 x-3}{(2 x-4)(x-3)} \leq 0
\end{aligned}
$$

Set the numerator and denominator each equal to zero to find the boundary numbers.

$$
\begin{gathered}
-3 x-3=0 \\
x=-1 \\
(2 x-4)(x-3)=0 \\
x=2, x=3
\end{gathered}
$$

Use the boundary numbers to split the number line into intervals.

Test a value within each interval to determine whether the rational function is positive or negative on each interval.

Test Value	$\boldsymbol{f}(\boldsymbol{x})$	Positive or Negative
-2	$\frac{-3(-2)-3}{(2(-2)-4)(-2-3)}=\frac{3}{40}$	Positive
0	$\frac{-3(0)-3}{(2(0)-4)(0-3)}=\frac{-3}{12}=-\frac{1}{4}$	Negative
2.5	$\frac{-3(2.5)-3}{(2(2.5)-4)(2.5-3)}=\frac{-10.5}{-0.5}=21$	Positive
4	Negative	Positive

Find the intervals where the inequality is less than or equal to zero (the negative intervals, including the boundary numbers that set the numerator equal to zero).

$$
\frac{-3 x-3}{(2 x-4)(x-3)} \leq 0
$$

Remember, values that set the denominator equal to zero are never included in the solution set.

$$
[-1,2) \cup(3, \infty)
$$

Problem \#15

First, rearrange the inequality so that one side is zero.

$$
\frac{x^{2}-3 x-10}{2-x}-3<0
$$

Next, multiply to get a common denominator. Note that we are just multiplying by 1 , so we haven't changed the inequality.

$$
\begin{aligned}
& \frac{x^{2}-3 x-10}{2-x}-3\left(\frac{2-x}{2-x}\right)<0 \\
& \frac{x^{2}-3 x-10}{2-x}-\frac{6-3 x}{2-x}<0
\end{aligned}
$$

Now that we have a common denominator, we can subtract the fractions.

$$
\begin{gathered}
\frac{x^{2}-3 x-10-(6-3 x)}{2-x}<0 \\
\frac{x^{2}-3 x-10-6+3 x}{2-x}<0 \\
\frac{x^{2}-16}{2-x}<0
\end{gathered}
$$

Set the numerator and denominator each equal to zero to find the boundary numbers.

$$
\begin{gathered}
x^{2}-16=0 \\
(x-4)(x+4)=0 \\
x=4, x=-4 \\
2-x=0 \\
x=2
\end{gathered}
$$

Use the boundary numbers to split the number line into intervals.

Test a value within each interval to determine whether the rational function is positive or negative on each interval.

Test Value	$\boldsymbol{f}(\boldsymbol{x})$	Positive or Negative
-5	$\frac{(-5)^{2}-16}{2-(-5)}=\frac{9}{7}$	Positive
1	$\frac{1^{2}-16}{2-1}=\frac{-15}{1}=-15$	Negative
3	$\frac{3^{2}-16}{2-3}=\frac{-7}{-1}=7$	Positive
5	$\frac{5^{2}-16}{2-5}=\frac{9}{-3}=-3$	Negative
Positive	Negative	Positive

Find the intervals where the inequality is less than zero (the negative intervals, not including the boundary numbers).

$$
\begin{gathered}
\frac{x^{2}-16}{2-x}<0 \\
(-4,2) \cup(4, \infty)
\end{gathered}
$$

Problem \#16

First, rearrange the inequality so that one side is zero.

$$
x^{3}+2 x^{2}-9 x-18<0
$$

Next, set the function equal to zero to find the boundary numbers. Factor by grouping to solve for the zeros.

$$
\begin{gathered}
x^{3}+2 x^{2}-9 x-18=0 \\
x^{2}(x+2)-9(x+2)=0 \\
\left(x^{2}-9\right)(x+2)=0 \\
(x-3)(x+3)(x+2)=0 \\
x=3 \cdot x=-3, x=-2
\end{gathered}
$$

Use the boundary numbers to split the number line into intervals.

Test a value within each interval to determine whether the rational function is positive or negative on each interval.

Test Value	$f(x)$	Positive or Negative
-4	$(-4-3)(-4+3)(-4+2)=-14$	Negative
-2.5	$(-2.5-3)(-2.5+3)(-2.5+2)=1.375$	Positive
1	$(1-3)(1+3)(1+2)=-24$	Negative
4	$(4-3)(4+3)(4+2)=42$	Positive
Negative	Positive Negative	Positive

Find the intervals where the inequality is less than zero (the negative intervals, not including the boundary numbers).

$$
\begin{gathered}
x^{3}+2 x^{2}-9 x-18<0 \\
\quad(-\infty,-3) \cup(-2,3)
\end{gathered}
$$

Problem \#17

First, rearrange the inequality so that one side is zero.

$$
2 x^{3}+8 x^{2}-8 x-32 \leq 0
$$

Next, set the function equal to zero to find the boundary numbers. Factor by grouping to solve for the zeros.

$$
\begin{gathered}
2 x^{2}(x+4)-8(x+4) \leq 0 \\
\left(2 x^{2}-8\right)(x+4) \leq 0 \\
(2 x+4)(x-2)(x+4) \leq 0 \\
x=-2, x=2, x=-4
\end{gathered}
$$

Use the boundary numbers to split the number line into intervals.

Test a value within each interval to determine whether the rational function is positive or negative on each interval.

Test Value	$f(x)$	Positive or Negative
-5	$(2(-5)+4)(-5-2)(-5+4)=-42$	Negative
-3	$(2(-3)+4)(-3-2)(-3+4)=10$	Positive
0	$(2(0)+4)(0-2)(0+4)=-32$	Negative
3	$(2(3)+4)(3-2)(3+4)=70$	Positive
	Positive Negative	Positive

Find the intervals where the inequality is less than or equal to zero (the negative intervals, including the boundary numbers).

$$
\begin{gathered}
2 x^{3}+8 x^{2}-8 x-32 \leq 0 \\
(-\infty,-4] \cup[-2,2]
\end{gathered}
$$

Problem \#18

a. Split into three terms and evaluate each using the properties of exponents:

$$
\begin{gathered}
-4^{\frac{3}{2}}=-\sqrt{4}^{3}=-2^{3}=-8 \\
-4(2)^{-3}=-4\left(\frac{1}{2^{3}}\right)=-4\left(\frac{1}{8}\right)=-\frac{4}{8}=-\frac{1}{2} \\
\left(16^{4}\right)^{\frac{1}{8}}=16^{(4)\left(\frac{1}{8}\right)}=16^{\frac{1}{2}}=\sqrt{16}=4
\end{gathered}
$$

Combine the simplified terms to evaluate the full expression:

$$
-8-\frac{1}{2}+4=-4.5
$$

b. Split into two terms and evaluate each using the properties of exponents:

$$
\begin{gathered}
10^{8} 10^{-5}=10^{8+(-5)}=10^{3}=1,000 \\
5^{-2}=\frac{1}{5^{2}}=\frac{1}{25}
\end{gathered}
$$

Combine the simplified terms to evaluate the full expression:

$$
1,000\left(\frac{1}{25}\right)=40
$$

c. Split into two terms and evaluate each using the properties of exponents:

$$
\begin{gathered}
\frac{\left(7^{\frac{1}{2}}\right)^{\frac{3}{2}}}{7^{-\frac{1}{4}}}=\frac{7^{\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)}}{7^{-\frac{1}{4}}}=\frac{7^{\frac{3}{4}}}{7^{-\frac{1}{4}}}=7^{\left(\frac{3}{4}-\left(-\frac{1}{4}\right)\right)}=7^{\frac{4}{4}}=7 \\
-3^{10}\left(\frac{3^{-2}}{3^{5}}\right)=-3^{10} 3^{(-2-5)}=-3^{10} 3^{-7}=-3^{(10+(-7))}=-3^{3}=-27
\end{gathered}
$$

Combine the simplified terms to evaluate the full expression:

$$
7-27=-20
$$

Problem \#19

a. Isolate the radical:

$$
\sqrt{8 x-7}=1+x
$$

Square both sides:

$$
8 x-7=(1+x)^{2}
$$

Solve for x by factoring:

$$
\begin{gathered}
8 x-7=1+2 x+x^{2} \\
0=x^{2}-6 x+8 \\
0=(x-4)(x-2)
\end{gathered}
$$

Any x-value that sets either factor equal to zero is a possible solution.

$$
\begin{array}{cc}
(x-4)=0 & (x-2)=0 \\
x=4 & x=2
\end{array}
$$

Check for extraneous solutions:

$$
\begin{array}{cc}
\sqrt{8(4)-7}-2(4)=1-4 & \sqrt{8(2)-7}-2(2)=1-2 \\
\sqrt{32-7}-8=-3 & \sqrt{16-7}-4=-1 \\
\sqrt{25}=5 & \sqrt{9}=3 \\
5=5 & 3=3
\end{array}
$$

Both solutions satisfy the original equation, so there are two solutions:

$$
x=4, x=2
$$

b. Isolate the more complicated radical:

$$
\sqrt{2 x+3}+3=\sqrt{14 x+18}
$$

Square both sides:

$$
(\sqrt{2 x+3}+3)^{2}=14 x+18
$$

Simplify:

$$
\begin{gathered}
2 x+3+6 \sqrt{2 x+3}+9=14 x+18 \\
2 x+12+6 \sqrt{2 x+3}=14 x+18 \\
6 \sqrt{2 x+3}=12 x+6 \\
\sqrt{2 x+3}=\frac{12 x+6}{6} \\
\sqrt{2 x+3}=2 x+1
\end{gathered}
$$

Square both sides:

$$
2 x+3=(2 x+1)^{2}
$$

Simplify:

$$
\begin{gathered}
2 x+3=4 x^{2}+4 x+1 \\
0=4 x^{2}+2 x-2
\end{gathered}
$$

Solve for x by factoring:

$$
\begin{gathered}
0=2\left(2 x^{2}+x-1\right) \\
0=2(2 x-1)(x+1)
\end{gathered}
$$

Any x-value that sets either factor equal to zero is a possible solution.

$$
\begin{array}{cc}
(2 x-1)=0 & (x+1)=0 \\
x=\frac{1}{2} & x=-1
\end{array}
$$

Check for extraneous solutions:

$$
\begin{array}{cc}
\sqrt{2\left(\frac{1}{2}\right)+3}=\sqrt{14\left(\frac{1}{2}\right)+18}-3 & \sqrt{2(-1)+3}=\sqrt{14(-1)+18}-3 \\
\sqrt{1+3}=\sqrt{7+18}-3 & \sqrt{-2+3}=\sqrt{-14+18}-3 \\
\sqrt{4}=\sqrt{25}-3 & \sqrt{1}=\sqrt{4}-3 \\
2=5-3 & 1=2-3 \\
2=2 & 1 \neq-1
\end{array}
$$

Since $x=-1$ is an extraneous solution, there is only one real solution:

$$
x=\frac{1}{2}
$$

Problem \#20

a. Use the substitution method:

$$
\begin{gathered}
u=x^{\frac{1}{3}} \\
\left(x^{\frac{1}{3}}\right)^{2}-4 x^{\frac{1}{3}}+3=0 \\
u^{2}-4 u+3=0
\end{gathered}
$$

Solve for u by factoring:

$$
(u-3)(u-1)=0
$$

Any u-value that sets either factor equal to zero is a possible solution:

$$
\begin{array}{cc}
(u-3)=0 & (u-1)=0 \\
u=3 & u=1
\end{array}
$$

Convert u back to x :

$$
\begin{aligned}
& u=x^{\frac{1}{3}} \\
& x=u^{3}
\end{aligned}
$$

$$
\begin{array}{ll}
x=3^{3} & x=1^{3} \\
x=27 & x=1
\end{array}
$$

b. Use the substitution method:

$$
\begin{aligned}
& u=x^{-1} \quad u^{2}=\left(x^{-1}\right)^{2}=x^{-2} \\
& 2 u^{2}+3 u=2 \\
& 2 u^{2}+3 u-2=0
\end{aligned}
$$

Solve for u by factoring:

$$
(2 u-1)(u+2)=0
$$

Any u-value that sets either factor equal to zero is a possible solution:

$$
\begin{array}{cc}
(2 u-1)=0 & (u+2)=0 \\
u=\frac{1}{2} & u=-2
\end{array}
$$

Convert u back to x :

\[

\]

Problem \#21

a.

$$
\begin{gathered}
f(-1)=-2(-1)^{-3}=-2\left(\frac{1}{-1^{3}}\right)=-2\left(\frac{1}{-1}\right)=2 \\
f(0)=-2(0)^{-3}=-2\left(\frac{1}{0^{3}}\right)=\text { undefined }
\end{gathered}
$$

b. Because n is negative, $f(0)$ is undefined, and the domain includes all real numbers other than 0 .

$$
D:(-\infty, 0) \cup(0, \infty)
$$

Because n is negative, there are no solutions to $f(x)=0$, so the range includes all real numbers other than 0 .

$$
R:(-\infty, 0) \cup(0, \infty)
$$

c. Use the graph below.

$$
\begin{gathered}
\text { Increasing: : }(-\infty, 0) \cup(0, \infty) \\
\text { Decreasing: None }
\end{gathered}
$$

d. Use the graph below.

$$
\begin{aligned}
& \text { As } x \rightarrow \infty, f(x) \rightarrow 0 \\
& \text { As } x \rightarrow-\infty, f(x) \rightarrow 0
\end{aligned}
$$

e. Graph features:

- Because n is a negative integer, $x \neq 0$ and $f(x) \neq 0$.
- Vertical asymptote at $x=0$
- Horizontal asymptote at $y=0$
- Because n is odd:
- It is possible for $f(x)$ to have both negative and positive solutions.
- The graph is on both sides of the x-axis.
- Because $a>0$, the graph is reflected across the x-axis.
- If $x>0 \rightarrow y<0$
- If $x<0 \rightarrow y>0$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	$-2(-2)^{-3}=-2\left(\frac{1}{-2^{3}}\right)=-2\left(\frac{1}{-8}\right)=\frac{1}{4}$
-1	$-2(-1)^{-3}=-2\left(\frac{1}{-1^{3}}\right)=-2\left(\frac{1}{-1}\right)=2$
$-\frac{1}{2}$	$-2\left(-\frac{1}{2}\right)^{-3}=-2\left(-2^{3}\right)=-2(-8)=16$
$\frac{1}{2}$	$-2\left(\frac{1}{2}\right)^{-3}=-2\left(2^{3}\right)=-2(8)=-16$
1	$-2(1)^{-3}=-2\left(\frac{1}{1^{3}}\right)=-2\left(\frac{1}{1}\right)=-2$
2	$-2(2)^{-3}=-2\left(\frac{1}{2^{3}}\right)=-2\left(\frac{1}{8}\right)=-\frac{1}{4}$

Problem \#22

a. Replace $f(x)$ with y :

$$
y=\frac{4 x+1}{3-x}
$$

Solve for x :

$$
\begin{gathered}
y(3-x)=4 x+1 \\
3 y-x y=4 x+1 \\
3 y-1=4 x+x y \\
3 y-1=x(4+y) \\
\frac{3 y-1}{4+y}=x
\end{gathered}
$$

Switch x and y :

$$
y=\frac{3 x-1}{4+x}
$$

Replace y with $f^{-1}(x)$:

$$
f^{-1}(x)=\frac{3 x-1}{4+x}
$$

Check your answer:

$$
\begin{gathered}
\left(f \circ f^{-1}\right)(x)=x \\
x=\frac{4\left(\frac{3 x-1}{4+x}\right)+1}{3-\left(\frac{3 x-1}{4+x}\right)} \\
x\left(3-\left(\frac{3 x-1}{4+x}\right)\right)=4\left(\frac{3 x-1}{4+x}\right)+1 \\
3 x-\left(\frac{x(3 x-1)}{4+x}\right)=\frac{4(3 x-1)}{4+x}+1 \\
3 x-\left(\frac{3 x^{2}-x}{4+x}\right)=\frac{12 x-4}{4+x}+1 \\
3 x(4+x)-\left(3 x^{2}-x\right)=12 x-4+1(4+x) \\
12 x+3 x^{2}-3 x^{2}+x=12 x-4+4+x \\
13 x=13 x \\
x=x
\end{gathered}
$$

b.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x))=f(2 x-6) \\
& =\frac{4(2 x-6)+1}{3-(2 x-6)} \\
& =\frac{8 x-24+1}{3-2 x+6} \\
& =\frac{8 x-23}{9-2 x}
\end{aligned}
$$

c.

$$
\begin{aligned}
&(g \circ f)(x)=g(f(x))=g\left(\frac{4 x+1}{3-x}\right) \\
&= 2\left(\frac{4 x+1}{3-x}\right)-6 \\
&= \frac{2(4 x+1)}{3-x}-6 \\
&= \frac{8 x+2}{3-x}-6\left(\frac{3-x}{3-x}\right) \\
&= \frac{8 x+2}{3-x}-\frac{6(3-x)}{3-x} \\
&= \frac{8 x+2}{3-x}-\frac{18-6 x}{3-x} \\
&= \frac{8 x+2-(18-6 x)}{3-x} \\
&= \frac{8 x+2-18+6 x}{3-x} \\
&=\frac{14 x-16}{3-x}
\end{aligned}
$$

Problem \#23

a.

$$
\begin{gathered}
f(2)=-1 \\
g(2)=2 \\
4(-1)-7(2)=-4-14=-\mathbf{1 8}
\end{gathered}
$$

b.

$$
\begin{gathered}
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \\
\frac{f(-8)}{g(-8)}=\frac{9}{-3}=-3
\end{gathered}
$$

c.

$$
\begin{gathered}
(f \circ g)(x)=f(g(x)) \\
g(5)=-6 \\
f(-6)=7
\end{gathered}
$$

d.

$$
\begin{gathered}
(f \circ f)(x)=f(f(x)) \\
f(0)=1 \\
f(1)=\mathbf{0}
\end{gathered}
$$

e.

$$
\begin{gathered}
(f g)(x)=f(x) * g(x) \\
f(4) * g(4)=(-3)(-3)=\mathbf{9}
\end{gathered}
$$

Problem \#24

a. Any x-value can be plugged in:

$$
D:(-\infty, \infty)
$$

Regardless of the x-value, $f(x)>0$:

$$
R:(0, \infty)
$$

b. Each time x increases by 1 , the previous value of $f(x)$ is multiplied by a :

$$
\begin{gathered}
a=\frac{2}{5} \\
0<a<1
\end{gathered}
$$

f is always decreasing
c. f is always decreasing but never reaches 0 :

$$
\begin{gathered}
\text { Horizontal asymptote at } y=0 \\
\text { No vertical asymptotes }
\end{gathered}
$$

d. When $x=0, f(x)=C=4$:

$$
y \text {-intercept: }(0,4)
$$

The graph of f never touches the x-axis, so there are no x-intercepts.
e. Yes, f is a one-to-one function because no two x-values produce the same y-value. Yes, f has an inverse because it is a one-to-one function.
f.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	$4\left(\frac{2}{5}\right)^{-2}=4\left(\frac{5^{2}}{2}\right)=4\left(\frac{25}{4}\right)=25$
-1	$4\left(\frac{2}{5}\right)^{-1}=4\left(\frac{5^{1}}{2}\right)=4\left(\frac{5}{2}\right)=10$
1	$4\left(\frac{2}{5}\right)^{1}=4\left(\frac{2}{5}\right)=\frac{8}{5}$

Problem \#25

a. Convert hours to minutes:

$$
4 \text { hours } * 60 \text { minutes/hour }=240 \text { minutes }
$$

Plug $t=240$ into the function:

$$
S(240)=40+\frac{1}{5}(240-35)=40+\frac{1}{5}(205)=40+41=\mathbf{8 1}
$$

b. Yes $-S(t)$ is a linear function, which means it is a one-to-one function and has an inverse.
c. For the function S, the domain is the number of minutes a student studied and the range is the expected exam score.

For the inverse function S^{-1}, the domain is the expected exam score and the range is the number of minutes a student studied.
d. Solve the function for t :

$$
\begin{gathered}
S=40+\frac{1}{5}(t-35) \\
S=40+\frac{1}{5} t-7 \\
S=33+\frac{1}{5} t \\
S-33=\frac{1}{5} t \\
5(S-33)=t \\
5 S-165=t \\
\boldsymbol{t}=\mathbf{5 S}-\mathbf{1 6 5}
\end{gathered}
$$

Plug 90 into the inverse function:

$$
t=5(90)-165=450-165=\mathbf{2 8 5}
$$

To have an expected exam score of 90 , a student must study for 285 minutes.

Problem \#26

$$
\begin{gathered}
P=10,000 \\
r=.04
\end{gathered}
$$

a. If interest is compounded annually, $n=1$.

$$
\begin{gathered}
A=P\left(1+\frac{r}{n}\right)^{n t} \\
A(t)=10,000\left(1+\frac{.04}{1}\right)^{1 t} \\
A(t)=10,000(1.04)^{t}
\end{gathered}
$$

b. If interest is compounded quarterly, $n=4$.

$$
\begin{gathered}
A=P\left(1+\frac{r}{n}\right)^{n t} \\
A(t)=10,000\left(1+\frac{.04}{4}\right)^{4 t} \\
A(t)=10,000(1.01)^{4 t}
\end{gathered}
$$

c. If interest is compounded continuously, use the equation:

$$
\begin{gathered}
A=P e^{r t} \\
A(t)=10,000 e^{.04 t}
\end{gathered}
$$

Problem \#27

a. The half-life is $k=8$ hours and the initial amount is $C=10 \mathrm{mg}$.

$$
\begin{aligned}
& A(t)=C\left(\frac{1}{2}\right)^{\frac{t}{k}} \\
& A(t)=10\left(\frac{1}{2}\right)^{\frac{t}{8}}
\end{aligned}
$$

b. Plug $t=4$ into the function:

$$
A(4)=10\left(\frac{1}{2}\right)^{\frac{4}{8}}=10\left(\frac{1}{2}\right)^{\frac{1}{2}}=10 \sqrt{\frac{1}{2}} \approx 7.1 \mathrm{mg}
$$

A person has about 7.1 mg of Adderall in their system 4 hours after taking a 10 mg dosage.
c. It takes 8 hours for the amount to reach half of its previous value:

$$
\begin{gathered}
10\left(\frac{1}{2}\right)=5 \mathrm{mg} \text { remaining after } 8 \text { hours } \\
5\left(\frac{1}{2}\right)=2.5 \mathrm{mg} \text { remaining after } 16 \text { hours } \\
2.5\left(\frac{1}{2}\right)=1.25 \mathrm{mg} \text { remaining after } 24 \text { hours }
\end{gathered}
$$

Problem \#28

a.

$$
\begin{gathered}
-2 \ln 4 x=-6 \\
\ln 4 x=3 \\
e^{\ln 4 x}=e^{3} \\
4 x=e^{3} \\
x=\frac{1}{4} e^{3}
\end{gathered}
$$

b.

$$
\begin{gathered}
\log 2 x=4 \\
10^{\log 2 x}=10^{4} \\
2 x=10,000 \\
x=5,000
\end{gathered}
$$

c.

$$
\begin{gathered}
3 \log _{2}(9 x)=-6 \\
\log _{2}(9 x)=-2 \\
2^{\log _{2}(9 x)}=2^{-2} \\
9 x=\frac{1}{2^{2}} \\
9 x=\frac{1}{4} \\
x=\frac{1}{36}
\end{gathered}
$$

d.

$$
\begin{gathered}
3\left(2^{x}\right)=24 \\
2^{x}=8 \\
x=3
\end{gathered}
$$

e.

$$
\begin{aligned}
e^{2 x} & =e^{\frac{1}{3}} \\
\ln e^{2 x} & =\ln e^{\frac{1}{3}} \\
2 x & =\frac{1}{3} \\
x & =\frac{1}{6}
\end{aligned}
$$

Problem \#29

a. You can only find the logarithm of positive values.

$$
\begin{gathered}
3 x-12>0 \\
3 x>12 \\
x>4 \\
(4, \infty)
\end{gathered}
$$

b. You can only find the logarithm of positive values.

$$
\begin{gathered}
x^{2}-25>0 \\
x^{2}>25 \\
x>5 \quad x<-5 \\
(-\infty,-5) \cup(5, \infty)
\end{gathered}
$$

c. You can only find the logarithm of positive values, and you can only take the square root of values greater than or equal to zero.

$$
\begin{array}{cc}
5-\sqrt{x+3}>0 & \text { and } \\
-\sqrt{x+3}>-5 & x+3 \geq 0 \\
\sqrt{x+3}<5 & x \geq-3 \\
x+3<25 & \\
x<22 &
\end{array}
$$

$[-3,22)$
d. You can only find the logarithm of positive values, but exponential functions are always positive.

$$
\begin{gathered}
1^{x}>0 \\
(-\infty, \infty)
\end{gathered}
$$

