LionTut:ers

www.LionTutors.com
MATH 022 - Exam 3 - Practice Exam Solutions

Problem \#1

a. Replace $f(x)$ with y :

$$
y=\frac{4 x+1}{3-x}
$$

Solve for x :

$$
\begin{gathered}
y(3-x)=4 x+1 \\
3 y-x y=4 x+1 \\
3 y-1=4 x+x y \\
3 y-1=x(4+y) \\
\frac{3 y-1}{4+y}=x
\end{gathered}
$$

Switch x and y :

$$
y=\frac{3 x-1}{4+x}
$$

Replace y with $f^{-1}(x)$:

$$
f^{-1}(x)=\frac{3 x-1}{4+x}
$$

Check your answer:

$$
\begin{gathered}
\left(f \circ f^{-1}\right)(x)=x \\
x=\frac{4\left(\frac{3 x-1}{4+x}\right)+1}{3-\left(\frac{3 x-1}{4+x}\right)} \\
x\left(3-\left(\frac{3 x-1}{4+x}\right)\right)=4\left(\frac{3 x-1}{4+x}\right)+1 \\
3 x-\left(\frac{x(3 x-1)}{4+x}\right)=\frac{4(3 x-1)}{4+x}+1 \\
3 x-\left(\frac{3 x^{2}-x}{4+x}\right)=\frac{12 x-4}{4+x}+1 \\
3 x(4+x)-\left(3 x^{2}-x\right)=12 x-4+1(4+x) \\
12 x+3 x^{2}-3 x^{2}+x=12 x-4+4+x \\
13 x=13 x \\
x=x
\end{gathered}
$$

b.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x))=f(2 x-6) \\
& =\frac{4(2 x-6)+1}{3-(2 x-6)} \\
& =\frac{8 x-24+1}{3-2 x+6} \\
& =\frac{8 x-23}{9-2 x}
\end{aligned}
$$

c.

$$
\begin{aligned}
&(g \circ f)(x)=g(f(x))=g\left(\frac{4 x+1}{3-x}\right) \\
&= 2\left(\frac{4 x+1}{3-x}\right)-6 \\
&=\frac{2(4 x+1)}{3-x}-6 \\
&= \frac{8 x+2}{3-x}-6\left(\frac{3-x}{3-x}\right) \\
&= \frac{8 x+2}{3-x}-\frac{6(3-x)}{3-x} \\
&= \frac{8 x+2}{3-x}-\frac{18-6 x}{3-x} \\
&= \frac{8 x+2-(18-6 x)}{3-x} \\
&= \frac{8 x+2-18+6 x}{3-x} \\
&=\frac{14 x-16}{3-x}
\end{aligned}
$$

Problem \#2

a.

$$
\begin{gathered}
f(2)=-1 \\
g(2)=2 \\
4(-1)-7(2)=-4-14=-\mathbf{1 8}
\end{gathered}
$$

b.

$$
\begin{gathered}
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \\
\frac{f(-8)}{g(-8)}=\frac{9}{-3}=-3
\end{gathered}
$$

c.

$$
\begin{gathered}
(f \circ g)(x)=f(g(x)) \\
g(5)=-6 \\
f(-6)=7
\end{gathered}
$$

d.

$$
\begin{gathered}
(f \circ f)(x)=f(f(x)) \\
f(0)=1 \\
f(1)=\mathbf{0}
\end{gathered}
$$

e.

$$
\begin{gathered}
(f g)(x)=f(x) * g(x) \\
f(4) * g(4)=(-3)(-3)=\mathbf{9}
\end{gathered}
$$

Problem \#3

a. Any x-value can be plugged in:

$$
D:(-\infty, \infty)
$$

Regardless of the x-value, $f(x)>0$:

$$
R:(0, \infty)
$$

b. Each time x increases by 1 , the previous value of $f(x)$ is multiplied by a :

$$
\begin{gathered}
a=\frac{2}{5} \\
0<a<1
\end{gathered}
$$

f is always decreasing
c. f is always decreasing but never reaches 0 :

> Horizontal asymptote at $y=0$
> No vertical asymptotes
d. When $x=0, f(x)=C=4$:

$$
y \text {-intercept: }(0,4)
$$

The graph of f never touches the x-axis, so there are no x-intercepts.
e. Yes, f is a one-to-one function because no two x-values produce the same y-value. Yes, f has an inverse because it is a one-to-one function.
f.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	$4\left(\frac{2}{5}\right)^{-2}=4\left(\frac{5^{2}}{2}\right)=4\left(\frac{25}{4}\right)=25$
-1	$4\left(\frac{2}{5}\right)^{-1}=4\left(\frac{5^{1}}{2}\right)=4\left(\frac{5}{2}\right)=10$
1	$4\left(\frac{2}{5}\right)^{1}=4\left(\frac{2}{5}\right)=\frac{8}{5}$

Problem \#4

a. Convert hours to minutes:

$$
4 \text { hours } * 60 \text { minutes } / \text { hour }=240 \text { minutes }
$$

Plug $t=240$ into the function:

$$
S(240)=40+\frac{1}{5}(240-35)=40+\frac{1}{5}(205)=40+41=\mathbf{8 1}
$$

b. Yes $-S(t)$ is a linear function, which means it is a one-to-one function and has an inverse.
c. For the function S, the domain is the number of minutes a student studied and the range is the expected exam score.

For the inverse function S^{-1}, the domain is the expected exam score and the range is the number of minutes a student studied.
d. Solve the function for t :

$$
\begin{gathered}
S=40+\frac{1}{5}(t-35) \\
S=40+\frac{1}{5} t-7 \\
S=33+\frac{1}{5} t \\
S-33=\frac{1}{5} t \\
5(S-33)=t \\
5 S-165=t \\
\boldsymbol{t}=\mathbf{5 S}-\mathbf{1 6 5}
\end{gathered}
$$

Plug 90 into the inverse function:

$$
t=5(90)-165=450-165=\mathbf{2 8 5}
$$

To have an expected exam score of 90 , a student must study for 285 minutes.

Problem \#5

$$
\begin{gathered}
P=10,000 \\
r=.04
\end{gathered}
$$

a. If interest is compounded annually, $n=1$.

$$
\begin{gathered}
A=P\left(1+\frac{r}{n}\right)^{n t} \\
A(t)=10,000\left(1+\frac{.04}{1}\right)^{1 t} \\
A(t)=10,000(1.04)^{t}
\end{gathered}
$$

b. If interest is compounded quarterly, $n=4$.

$$
\begin{gathered}
A=P\left(1+\frac{r}{n}\right)^{n t} \\
A(t)=10,000\left(1+\frac{.04}{4}\right)^{4 t} \\
A(t)=10,000(1.01)^{4 t}
\end{gathered}
$$

c. If interest is compounded continuously, use the equation:

$$
\begin{gathered}
A=P e^{r t} \\
A(t)=10,000 e^{.04 t}
\end{gathered}
$$

Problem \#6

a. The half-life is $k=8$ hours and the initial amount is $C=10 \mathrm{mg}$.

$$
\begin{aligned}
& A(t)=C\left(\frac{1}{2}\right)^{\frac{t}{k}} \\
& A(t)=10\left(\frac{1}{2}\right)^{\frac{t}{8}}
\end{aligned}
$$

b. Plug $t=4$ into the function:

$$
A(4)=10\left(\frac{1}{2}\right)^{\frac{4}{8}}=10\left(\frac{1}{2}\right)^{\frac{1}{2}}=10 \sqrt{\frac{1}{2}} \approx 7.1 \mathrm{mg}
$$

A person has about 7.1 mg of Adderall in their system 4 hours after taking a 10 mg dosage.
c. It takes 8 hours for the amount to reach half of its previous value:

$$
\begin{gathered}
10\left(\frac{1}{2}\right)=5 \mathrm{mg} \text { remaining after } 8 \text { hours } \\
5\left(\frac{1}{2}\right)=2.5 \mathrm{mg} \text { remaining after } 16 \text { hours } \\
2.5\left(\frac{1}{2}\right)=1.25 \mathrm{mg} \text { remaining after } 24 \text { hours }
\end{gathered}
$$

Problem \#7

a.

$$
\begin{gathered}
-2 \ln 4 x=-6 \\
\ln 4 x=3 \\
e^{\ln 4 x}=e^{3} \\
4 x=e^{3} \\
x=\frac{1}{4} e^{3}
\end{gathered}
$$

b.

$$
\begin{gathered}
\log 2 x=4 \\
10^{\log 2 x}=10^{4} \\
2 x=10,000 \\
x=5,000
\end{gathered}
$$

c.

$$
\begin{gathered}
3 \log _{2}(9 x)=-6 \\
\log _{2}(9 x)=-2 \\
2^{\log _{2}(9 x)}=2^{-2} \\
9 x=\frac{1}{2^{2}} \\
9 x=\frac{1}{4} \\
x=\frac{1}{36}
\end{gathered}
$$

d.

$$
\begin{gathered}
3\left(2^{x}\right)=24 \\
2^{x}=8 \\
x=3
\end{gathered}
$$

e.

$$
\begin{aligned}
e^{2 x} & =e^{\frac{1}{3}} \\
\ln e^{2 x} & =\ln e^{\frac{1}{3}} \\
2 x & =\frac{1}{3} \\
x & =\frac{1}{6}
\end{aligned}
$$

Problem \#8

a. You can only find the logarithm of positive values.

$$
\begin{gathered}
3 x-12>0 \\
3 x>12 \\
x>4 \\
(4, \infty)
\end{gathered}
$$

b. You can only find the logarithm of positive values.

$$
\begin{gathered}
x^{2}-25>0 \\
x^{2}>25 \\
x>5 \quad x<-5 \\
(-\infty,-5) \cup(5, \infty)
\end{gathered}
$$

c. You can only find the logarithm of positive values, and you can only take the square root of values greater than or equal to zero.

$$
\begin{array}{cc}
5-\sqrt{x+3}>0 & \text { and } \\
-\sqrt{x+3}>-5 & x+3 \geq 0 \\
\sqrt{x+3}<5 & x \geq-3 \\
x+3<25 & \\
x<22 &
\end{array}
$$

$[-3,22)$
d. You can only find the logarithm of positive values, but exponential functions are always positive.

$$
\begin{gathered}
1^{x}>0 \\
(-\infty, \infty)
\end{gathered}
$$

