## Problem 1

a) $h(90,7)=15$, When the plant is given 90 mL of water, and 7 mg of fertilizer, its height is 15 inches.
$h_{f}(90,7)=-0.5$, When the plant is given 90 mL of water, and 7 mg of fertilizer, its height is decreasing at a rate 0.5 inches/mg of fertilizer.
$h_{w}(90,7)=1.2$, When the plant is given 90 mL of water, and 7 mg of fertilizer, its height is increasing at a rate of 1.2 inches $/ \mathrm{mL}$ of water.
b) $h(88,8) \approx h(90,7)+1.2(88-90)-0.5(8-7)$
$h(88,8) \approx 15+1.2(-2)-0.5(1)=15-2.4-0.5=12.1$ inches

Problem 2
Recall the formula for the equation of the tangent plane is given by: $z-c=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$
First find the point:

$$
z=x^{2} y^{2}+x-y+2
$$

$$
\text { @ } x=1, y=0 \rightarrow z=(1)^{2}(0)^{2}+1-0+2 \rightarrow z=3
$$

$$
\begin{array}{r}
\text { Point: }(1,0,3) \\
t b t b \\
a b c
\end{array}
$$

Now find $f_{x}(a, b)$ and $f_{y}(a, b)$ :

$$
\begin{aligned}
& f_{x}(a, b)=2 x y^{2}+1 \rightarrow f_{x}(1,0)=1 \\
& f_{y}(a, b)=2 x^{2} y-1 \rightarrow f_{y}(1,0)=-1
\end{aligned}
$$

The equation of the tangent line is:

$$
\begin{aligned}
& z-3=1(x-1)+-1(y-0) \\
& z-3=x-1-y \\
& x-y-z=-2
\end{aligned}
$$

Problem 3
Recall that the linear approximation formula is given by: $L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(y-b)$

$$
\begin{aligned}
& f_{x}=\frac{-x}{\sqrt{9-x^{2}-4 y^{2}}} \rightarrow f_{x}(2,1)=\frac{-2}{\sqrt{9-4-4}}=\frac{-2}{1}=-2 \\
& f_{y}=\frac{-4 y}{\sqrt{9-x^{2}-4 y^{2}}} \longrightarrow f_{y}(2,1)=\frac{-4}{\sqrt{9-4-4}}=\frac{-4}{1}=-4
\end{aligned}
$$

$$
f(2,1)=\sqrt{9-(2)^{2}-4(1)^{2}}=1
$$

$$
\begin{aligned}
L(x, y)=1 & -2(x-2)-4(y-1) \\
L(1.98,1.02) & =1-2(1.98-2)-4(1.02-1) \\
& =1-2(. .02)-4(.02) \\
& =1+.04-.08 \\
& =.96
\end{aligned}
$$

Problem 4
Use the chain rule. Remember it is helpful to draw a tree diagram before you start:
$\omega$


$$
\frac{\partial \omega}{\partial t}=\frac{d \omega}{d x} \frac{\partial x}{\partial t}+\frac{d \omega}{d y} \frac{\partial y}{\partial t}+\frac{d \omega}{d z} \cdot \frac{\partial z}{\partial t}
$$

$$
\frac{\partial w}{\partial t}=\left(3 x^{2} y \cdot \frac{z}{x^{2}}\right)\left(-\sin (r s t)(r s)+s^{2} e^{s^{2} t}\right)+\left(x^{3}\right)\left(r^{2} s\right)+\left(\frac{1}{x}\right)(\ln s)
$$

(a)

$$
\begin{aligned}
& (r, s, t)=(\pi, 3,0) \\
& x=\cos (0)+e^{0}=2 \\
& y=0 \\
& z=0
\end{aligned}
$$

$$
\frac{\partial w}{\partial t}=(0)+(2)^{3}\left(\pi^{2}\right)(3)+\left(\frac{1}{2}\right) \ln (3)
$$

$$
\frac{\partial w}{\partial t}=24 \pi^{2}+\frac{1}{2} \ln (3)
$$

## Problem 5

a) To find the rate of change of $f(x, y)$ in the direction of a vector...

1. Find $\nabla f(x, y)$ :

$$
\begin{aligned}
& f_{x}=-y^{2} e^{x} \rightarrow f_{x}(0,1)=-1 \\
& f_{y}=y\left(-x e^{x y}\right)+e^{-x y} \rightarrow f_{y}(0,1)=0+e^{0}=1 \\
& \nabla f(x, y)=\langle-1,1\rangle
\end{aligned}
$$

2. Find $\overrightarrow{\mathrm{u}}$ :

$$
\vec{u}=\frac{\langle 3,4\rangle}{\sqrt{9+16}}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle
$$

3. Take the dot product of $\nabla f(x, y)$ and $\vec{u}$ :

$$
\begin{aligned}
& \langle-1,1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle \\
& =-\frac{3}{5}+\frac{4}{5} \\
& =\frac{1}{5}
\end{aligned}
$$

b) The direction of steepest ascent is $\nabla f(x, y)$ at $(\mathbf{0}, 1)$ :

$$
\nabla f(0,1)=\langle-1,1\rangle
$$

c) The maximum rate of change of $f(x, y)$ is at the magnitude of $\nabla f(x, y)$ at $(\mathbf{0}, 1)$ :

$$
|\langle-1,1\rangle|=\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{2}
$$

Problem 6
a) Directional Derivative

$$
\begin{aligned}
& \nabla P=\left\langle\frac{2 x z}{y}, \frac{-x^{2} z}{y^{2}}, \frac{x^{2}}{y}\right\rangle \\
& \nabla P(2,2,1)=\left\langle\frac{4}{2}, \frac{-4}{4}, \frac{4}{2}\right\rangle=\langle 2,-1,2\rangle \\
& \vec{v}=\langle 3-2,1-2,0-1\rangle=\langle 1,-1,-1\rangle \\
& \vec{u}=\left\langle\frac{1,-1,-1\rangle}{\sqrt{1+1+1}}=\left\langle\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right\rangle\right. \\
& D_{0}=\langle 2,-1,2\rangle \cdot\left\langle\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right\rangle=\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{\sqrt{3}}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

b) Negative Gradient

$$
-\nabla P(2,2,1)=\langle-2,1,-2\rangle
$$

Problem 7

point: $(1,0,2)$

$$
\begin{aligned}
& \vec{n}=\nabla F:\langle 2,-5,4\rangle \\
& \rightarrow F_{x}=2 x-5 y e^{x y} \rightarrow F_{x}(1,0,2)=2 \\
& F_{y}=2 y-5 x e^{x y} \rightarrow F_{y}(1,0,2)=0-5=-5 \\
& F_{z}=2 z \rightarrow F_{z}(1,0,2)=4
\end{aligned}
$$

Eq. of Plane:

$$
\begin{aligned}
& 2(x-1)-5(y-0)+4(z-2)=0 \\
& 2 x-2-5 y+4 z-8=0 \\
& 2 x-5 y+4 z=10
\end{aligned}
$$

Problem 8
Start by taking $f_{x}$ and $f_{y}$ and setting them equal to 0 :

$$
\begin{aligned}
& f_{x}=3 x^{2}-6 x-9=3\left(x^{2}-2 x-3\right) \\
& f_{y}=3 y^{2}-6 y=3 y(y-2)
\end{aligned} \quad\left\{\begin{array}{l}
3(x-3)(x+1)=0 \\
3 y(y-2)=0
\end{array}\right\} \begin{aligned}
& \left\{\begin{array} { l } 
{ x - 3 = 0 } \\
{ y = 0 }
\end{array} \quad \left\{\begin{array} { l } 
{ x + 1 = 0 } \\
{ y = 0 }
\end{array} \quad \left\{\begin{array}{l}
x-3=0 \\
y-2=0
\end{array}\right.\right.\right. \\
& \begin{array}{lll}
(3,0) & (-1,0) & \left\{\begin{array}{l}
x+1=0 \\
y-2=0
\end{array}\right.
\end{array} \\
& \begin{array}{l}
(3,2)
\end{array} \\
& (-1,2)
\end{aligned}
$$

To classify the critical points find $D=f_{x x}(a, b) f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}$ and evaluate it at each critical point:

$$
\begin{aligned}
& f_{x}=3 x^{2}-6 x-9 \\
& f_{x x}=6 x-6 \\
& f_{x y}=0 \\
& f_{y}=3 y^{2}-6 y \\
& f_{y y}=6 y-6
\end{aligned}
$$

$$
D=(6 x-6)(6 y-6)-0
$$

Q $(3,0) \rightarrow D=(12)(-6)<0$
saddle point
(a) $(-1,0) \rightarrow D=(-12)(-6)>0$, and $f_{x x}<0$ local maximum Q $(3,2) \rightarrow(12)(6)>0$, and $f_{x x}>0$ local minimum
@ $(-1,2) \rightarrow(-12)(6)<0$
saddle point

## Problem 9

Step 1: Draw the region
Step 2: Find the critical points of $f(x, y)$ :


$$
\begin{aligned}
& f_{x}=2 x-2 \\
& f_{y}=2 y
\end{aligned} \rightarrow\left\{\begin{aligned}
2 x-2=0 & \rightarrow x=1 \\
2 y=0 & \rightarrow y=0
\end{aligned}\right.
$$

C.P. : $(1,0)$

Step 3: Boundary Lines
$L_{1}: x=0$
$L_{2}: Y=X-2$
Lu. $y=2-x$
$f(0, y)=y^{2}$
$f(x, x-2)=x^{2}+(x-2)^{2}-2 x$
$f(x, 2-x)=x^{2}+(2-x)^{2}-2 x$
$f^{\prime}=2 y$ $f^{\prime}=2 x+2(x-2)-2$
$f^{\prime}=2 x+2(2-x)(-1)-2$
$0=2 y$
$0=2 x+2 x-4-2$
$0=2 x-4+2 x-2$
$y=0$
$0=4 x-6$
$4 x=6$
C.P. $\therefore(0,0)$
$x=\frac{3}{2}, y=\frac{3}{2}-2=-\frac{1}{2}$
$x=\frac{3}{2}, y=2-\frac{3}{2}=\frac{1}{2}$
c.P. $:\left(\frac{3}{2}, \frac{-1}{2}\right)$
C.P. $\therefore\left(\frac{3}{2}, \frac{1}{2}\right)$

Step 4: Evaluate endpoints, overall CP, and boundary CP $\quad F(x, y)=x^{2}+y^{2}-2 x$
$f(0,2)=4 \rightarrow$ Max
$f(0,-2)=4$
$f(2,0)=4-4=0$
Abs Max Value $=4$
Abs Min Value $=-1$
$f(1,0)=1-2=-1 \rightarrow$ Min
$f(0,0)=0$
$f(3 / 2,-1 / 2)=\frac{9}{4}+\frac{1}{4}-3=-\frac{1}{2}$
$f(3 / 2,1 / 2)=\frac{9}{4}+\frac{1}{4}-3=-\frac{1}{2}$

Problem 10
Use Lagrange Multipliers:

$$
\begin{aligned}
& d=\sqrt{(x-0)^{2}+(y-1)^{2}+(z-1)^{2}} \\
& f=x^{2}+(y-1)^{2}+(z-1)^{2} \\
& g=x+2 y+z \\
& \nabla f=\langle 2 x, 2(y-1), 2(z-1)\rangle \\
& \nabla g=\langle 1,2,1\rangle \\
& \nabla f=\lambda \nabla g \\
& \left\{\begin{array} { l } 
{ ( 2 x = \lambda ) 2 } \\
{ 2 ( y - 1 ) = 2 \lambda } \\
{ ( 2 ( z - 1 ) = \lambda ) 2 } \\
{ x + 2 y + z = 4 }
\end{array} \rightarrow \left\{\begin{array}{l}
4 x=2 \lambda \\
2 y-2=2 \lambda \\
4 z-4=2 \lambda \\
x+2 y+z=4
\end{array}\right.\right.
\end{aligned}
$$

(1) $=(2)$

$$
\begin{align*}
4 x & =2 y-2 \\
2 y & =4 x+2 \\
y & =2 x+1
\end{align*}
$$

Plug into (4):

$$
\begin{aligned}
4 x & =4 z-4 \\
x & =z-1 \\
z & =x+1
\end{aligned}
$$

$$
\begin{aligned}
& x+2(2 x+1)+x+1=4 \\
& x+4 x+2+x+1=4 \\
& 6 x=1 \\
& x=\frac{1}{6} \rightarrow y=\frac{4}{3}, z=\frac{7}{6}
\end{aligned}
$$

$$
\left(\frac{1}{6}, \frac{4}{3}, \frac{7}{6}\right)
$$

## Problem 11

Use Lagrane Multipliers:


1. Find C.P. of $f(x, y)$ to evaluate the inside:
$f_{x}=6 x$
$f_{y}=4 y-4$$\rightarrow\left\{\begin{array}{l}6 x=0 \rightarrow x=0 \\ 4 y-4=0 \rightarrow y=1\end{array}\right.$
C.P.: $(0,1)$
2. Use Lagrange to evaluate the boundary:

$$
\begin{array}{ll}
f=3 x^{2}+2 y^{2}-4 y & g=x^{2}+y^{2} \\
\nabla f=\langle 6 x, 4 y-4\rangle & \nabla g=\langle 2 x, 2 y\rangle
\end{array}
$$

$$
\nabla f=\lambda \nabla g
$$

$$
\left\{\begin{array} { l } 
{ ( 6 x = \lambda 2 x ) y } \\
{ ( 4 y - 4 = \lambda 2 y ) x } \\
{ x ^ { 2 } + y ^ { 2 } = 9 }
\end{array} \rightarrow \left\{\begin{array}{l}
6 x y=\lambda 2 x y \\
x(4 y-4)=\lambda 2 x y \\
x^{2}+y^{2}=9
\end{array}\right.\right.
$$

$$
\begin{array}{lll}
\text { (1) }=\text { (2) } & \text { Plug into (3): } & \\
6 x y=4 x y-4 x & x=0: y^{2}=9 & \\
2 x y+4 x=0 & & y= \pm 3 \\
2 x(y+2)=0 & & \\
x=0, y=-2 & \text { CP.: }(0,3),(0,-3) & \\
& & x^{2}+4=9 \\
& & \\
& & \text { C.P }:(\sqrt{5},-2),(\sqrt{5},-2)
\end{array}
$$

$f(x, y)=3 x^{2}+2 y^{2}-4 y$
$f(0,1)=2-4=-2$
$f(0,3)=18-12=6$
$f(0,-3)=18+12=30$
$f(-\sqrt{5}, 2)=15+8-8=15$
$f(\sqrt{5}, 2)=15$

Problem 12
Start by graphing the region. In this particular region, you can choose to integrate in either direction. I will solve the problem by integrate along the $y$ 's first.


To find $f(x, y)$, the function that goes inside the integral, solve for $z$ in the given equation:

$$
\begin{aligned}
& 4 x+6 y-2 z=0 \\
& {\left[2 x \sqrt{x}+\frac{3}{2}(\sqrt{x})^{2}\right]-\left[2 x x^{2}+\frac{3}{2}\left(x^{2}\right)^{2}\right]} \\
& 2 z=4 x+6 y \\
& z=2 x+3 y \\
& \int_{x=0}^{x=1} \int_{y=x^{2}}^{y=\sqrt{x}}(2 x+3 y) d y d x=\int_{x=0}^{x=1} \cdot\left[2 x y+\frac{3}{2} y^{2}\right]_{y=x^{2}}^{y=\sqrt{x}} d x \\
& =\int_{x=0}^{x=1}\left(2 x^{3 / 2}+\frac{3}{2} x-2 x^{3}-\frac{3}{2} x^{4}\right) d x \\
& \left.=\frac{4}{5} x^{5 / 2}+\frac{3}{4} x^{2}-\frac{1}{2} x^{4}-\frac{3}{10} x^{5}\right]_{x=0}^{x=1} \\
& =\left[\frac{4}{5}+\frac{3}{4}-\frac{1}{2}-\frac{3}{10}\right]-[0] \\
& =\frac{16}{20}+\frac{15}{20}-\frac{10}{20}-\frac{6}{20}=3 / 4
\end{aligned}
$$

Problem 13
Each of these iterated integrals are impossible to solve in the given order, so we must switch the order of integration. It is helpful to draw the region so find the new bounds of integration:


$$
\begin{aligned}
& \int_{x=0}^{x=3} \int_{y=0}^{y=\frac{1}{3} x} e^{x^{2}} d y d x \\
& \left.=\int_{x=0}^{x=3} y e^{x^{2}}\right]_{y=0}^{y=\frac{1}{3} x} d x \quad\left[\frac{1}{3} x e^{x^{2}}\right]-\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& =\int_{x=0}^{x=3} \frac{1}{3} x e^{x^{2}} d x \quad \begin{array}{l}
v=x^{2} \\
d u=2 x d x \\
d x=\frac{d u}{2 x}
\end{array} \\
& \left.=\int_{-}^{-} \frac{1}{3} x e^{u} \frac{d u}{2 x}=\frac{1}{6} \int e^{u} d u=\frac{1}{6} e^{x^{2}}\right]_{x=0}^{x=3} \\
& =\frac{1}{6} e^{9}-\frac{1}{6} e^{0} \\
& =\frac{e^{9}-1}{6}
\end{aligned}
$$



$$
\begin{aligned}
& x=\sqrt{y} \rightarrow y=x^{2} \\
& x=3 \\
& y=0 \\
& y=9
\end{aligned}
$$

$$
\begin{aligned}
& \int_{x=0}^{x=3} \int_{y=0}^{y=x^{2}} \sin \left(x^{3}\right) d y d x \\
& \left.=\int_{x=0}^{x=3} y \sin \left(x^{3}\right)\right]_{y=0}^{y=x^{2}} d x \rightarrow x^{2} \sin \left(x^{3}\right)-0 \\
& =\int_{x=0}^{x=3} x^{2} \sin \left(x^{3}\right) d x \\
& u=x^{3} \\
& d u=3 x^{2} d x \\
& d x=\frac{d u}{3 x^{2}} \\
& =\int_{-}^{-} x^{2} \sin (u) \frac{d u}{3 x^{2}}=\int \frac{1}{3} \sin (u) d u=-\frac{1}{3} \cos (u) \\
& \left.=-\frac{1}{3} \cos \left(x^{3}\right)\right]_{x=0}^{x=9} \\
& =-\frac{1}{3} \cos (27)+\frac{1}{3} \cos (0) \\
& =\frac{1-\cos (27)}{3}
\end{aligned}
$$

Problem 14

$$
\begin{aligned}
& 2 x+y+z=4 \rightarrow z=4-2 x-y \\
& 0 \leq z \leq 4-2 x-y \\
& 0 \leq y \leq 4-2 x \\
& 0 \leq x \leq 2
\end{aligned}
$$

$$
\int_{x=0}^{x=2} \int_{y=0}^{y=4-2 x} \int_{z=0}^{z=4-2 x-y} x z d z d y d x
$$



## Problem 15

First notice that we want the region between $z=3-x^{2}-y^{2}$ and above the region in the $x y$-plane $(z=0)$. This means we immediately know that:

$$
0 \leq z \leq 3-x^{2}-y^{2}
$$

This gives us the bounds for our outermost integral, so we can now just look at the $x y$ plane to set up the rest of the integral:

$x^{2} \leq y \leq \sqrt{x}$
$0 \leq x \leq 1$
$\int_{x=0}^{x=1} \int_{y=x^{2}}^{y=\sqrt{x}} \int_{z=0}^{z=3-x^{2}-y^{2}} e^{x y} d z d y d x$


$$
\iint_{D} e^{\frac{a^{-r^{2}}}{-x^{2}-y^{2}}} d A
$$

$$
\begin{aligned}
& =\iint_{0} e^{-r^{2}} \cdot r d r d \theta \\
& =\left(\int_{0}^{2} r e^{-r^{2}} d r\right)\left(\int_{0}^{\pi / 2} 1 d \theta\right) \\
& u=-r^{2} \\
& d u=-2 r d r \\
& \quad \int-\frac{1}{2} e^{u} d u \\
& -\frac{1}{2} e^{-r^{2}} \\
& \left.\left.=\left(-\frac{1}{2} e^{-r^{2}}\right]_{0}^{2}\right)(\theta]_{0}^{\pi / 2}\right) \\
& =\left(-\frac{1}{2} e^{-4}+\frac{1}{2} e^{0}\right)\left(\frac{\pi}{2}-0\right) \\
& =\left(\frac{1-e^{-4}}{2}\right) \frac{\pi}{2}=\frac{\pi\left(1-e^{-4}\right)}{4}
\end{aligned}
$$

Problem 14
Start by graphing the region. Since the region is circular, use polar coordinates.


$$
\int_{\theta=0}^{\theta=\pi / 2} 4 \sin ^{2} \theta d \theta=4 \int_{\theta=0}^{\theta=\pi / 2} \frac{1}{2}(1-\cos (2 \theta)) d \theta
$$

$$
\begin{aligned}
& \left.=2\left(\theta-\frac{1}{2} \sin (2 \theta)\right)=2 \theta-\sin (2 \theta)\right]_{0=0}^{\theta=\pi / 2} \\
& =\left[2\left(\frac{\pi}{2}\right)-\sin \left(\frac{2 \pi}{2}\right)\right]-[0-0] \\
& =\pi-\pi
\end{aligned}
$$

Problem 15
Use the formulas for mass and center of mass:


$0 \leq r \leq 1$
$0 \leq \theta \leq 2 \pi$

$$
\begin{aligned}
m & =\iint_{D}\left(4+2 x^{0}+y^{2}\right)^{0} d A \\
& =4(\text { area of circle) } \\
& =4 \pi(1)^{2} \\
& =4 \pi
\end{aligned}
$$

$x-s y m, y$-sym.

$$
\begin{aligned}
& \bar{x}=\frac{1}{m} \iint_{D} x(4+2 x+y) d A=\frac{1}{4 \pi} \iint_{D}\left(4 y+2 x^{2}+x y\right)^{0} d A=\frac{1}{4 \pi} \iint_{D} 2 x^{2} d A \\
& \begin{array}{l}
=\frac{1}{4 \pi} \int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=1} 2 r^{2} \cos ^{2} \theta r d r d \theta=\frac{1}{4 \pi}\left(\int_{r=0}^{r=1} 2 r^{3}\right. \\
\left.\left.=\frac{1}{4 \pi}\left(\frac{1}{2} r^{4}\right]_{0}^{1}\right) / \frac{1}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)_{0}^{2 \pi}\right)
\end{array} \\
& =\frac{1}{4 \pi}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)((2 \pi+0)-(0+0))=\frac{1}{4 \pi}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{(2 \pi)}=\frac{1}{8} \\
& \bar{y}=\frac{1}{m} \iint_{D} Y(4+2 x+y) d A=\frac{1}{4 \pi} \iint_{D}\left(4 x^{0}+2 y^{2}+y^{2}\right) d A \\
& =\frac{1}{4 \pi} \int_{\theta=0}^{\theta=2 \pi} r^{2} \sin ^{2} \theta r d r d \theta \\
& =\frac{1}{4 \pi}\left(\int_{0}^{1} r^{3} d r\right)\left(\int_{0}^{2 \pi} \sin ^{2} \theta d \theta\right) \\
& =\frac{1}{4 \pi}\left(\frac{1}{4} r^{4}\right]_{0}^{1}\left(\left.\frac{1}{2}\left(6-\frac{1}{2} \sin (26)\right)\right|_{0} ^{2 \pi}\right)=\frac{1}{4 \pi}\left(\frac{1}{4}\right)\left(\frac{1}{2}(2 \pi)\right)=\frac{1}{16} \\
& \operatorname{com}\left(\frac{1}{8}, \frac{1}{16}\right)
\end{aligned}
$$

